Extensions of Subgraph Reconfiguration

Jeffrey Kam
University of Waterloo

May 2022

Introduction

What is subgraph reconfiguration [Hanaka et al., 2020]?

- Given a graph G, a graph property Π, we want to reconfigure among subgraphs of G with property Π.
- 3 Rules: Token Sliding [Hearn and Demaine, 2005], Token Jumping [Kamiński et al., 2012], and Token
Addition/Removal [lto et al., 2011].
- 2 Variants: Edge-variant, and Vertex-variant [Hanaka et al., 2020].

Example under Edge-variant and TJ Rule

The property Π : "The graph is a path".

min source

- target

The talk will be restricted to the edge-variant and TJ rule.

Main Results

Property	Edge Variant - TJ
Path	NP-hard [Hanaka et al., 2020]
Cycle	P [Hanaka et al., 2020]
Tree	P [Hanaka et al., 2020]
k-bounded Path-width Tree	NP-hard [Theorem 1]

k-Bounded Path-width Tree Reconfiguration

Definition

A graph G is a k-bounded path-width tree if G is a tree such that its pathwidth is k or less.

Definition
Given a graph G and $v \in V(G)$, the Hamiltonian v-path problem asks whether G has a spanning path starting at v.

Theorem
The k-BOUNDED PATH-WIDTH TREE RECONFIGURATION problem is NP-hard for any fixed $k \geq 1$.
Proof Overview:

1. Given (G, v) for the Hamiltonian v-path problem, construct an instance (G^{\prime}, S, T) for the reconfiguration problem.

Constructing $\left(G^{\prime}, S, T\right)$: Overview

Given (G, v). Let $n=|V(G)|$.

where $g(k, n)=3^{k-1} n^{3}, f(k, n)=3^{k-1} \cdot(n-1+n \cdot g(k, n))+2$.

Constructing $\left(G^{\prime}, S, T\right):(k, /)$-claw

Definition

1-sum is an operation that joins 2 graphs by identifying a vertex from each graph and merging them into a single vertex.

(a) G_{1}

(b) G_{2}

(c) $G_{1} \oplus_{v_{2}, u_{1}} G_{2}$

Definition

A (k, I)-claw is a ternary tree of depth k where each leaf node is 1 -summed with an endpoint of a path of length $I-1$ (called a tail).

Constructing $\left(G^{\prime}, S, T\right):(k, /)$-claw
Definition
An almost (k, I)-claw is a (k, I)-claw with a tail removed.

Figure: Example of (k, I)-claws and almost (k, l)-claws

The endpoints of the tails are called the leaf nodes of the ($k, /$)-claw.

Constructing $\left(G^{\prime}, S, T\right)$: Spiked Graph

Definition

Let $G=(V, E)$. We define the k-spiked graph of G by adding k new pendant nodes as neighbours of each vertex in the graph.

(a) 1-spiked graph of K_{4}

(b) 2-spiked graph of K_{4}

We call the vertices of G the base vertices. For a base vertex v, the added edges incident to v are called the spike edges of v.

Constructing $\left(G^{\prime}, S, T\right): G^{\prime}$ revisited

where $g(k, n)=3^{k-1} n^{3}, f(k, n)=3^{k-1} \cdot(n-1+n \cdot g(k, n))+2$.

Constructing $\left(G^{\prime}, S, T\right)$: Source and Target Tokens

Figure: Source subgraph E_{s} (left) and Target subgraph E_{t} (right).

Constructing $\left(G^{\prime}, S, T\right)$: Validity of Source and Target
Both source and target induce an almost (k, l)-claw.
Lemma
For $k \geq 1$ and $I \geq 2$, an almost (k, I)-claw has path-width k.

Constructing $\left(G^{\prime}, S, T\right)$: Validity of Source and Target

Both source and target induce an almost (k, l)-claw.
Lemma
For $k \geq 1$ and $I \geq 2$, an almost (k, I)-claw has path-width k.

Definition

Let $k \geq 1$ and T be a tree. A vertex $v \in V(T)$ is k-good if $T \backslash v$ results in at most 2 branches with pathwidth k or more.

Theorem ([Scheffler, 1990])
Let $k \geq 1$ and T be a tree. $p w(T) \leq k$ if and only if v is k-good for all $v \in V(T)$.

k-Bounded Path-width Tree Reconfiguration

Theorem

The k-BOUNDED PATH-WIDTH TREE RECONFIGURATION problem is NP-hard for $k \geq 1$.
Proof Overview:

1. Given (G, v) for the Hamiltonian v-path problem, construct an instance (G^{\prime}, S, T) for the reconfiguration problem.
2. Show that G has a Hamiltonian v-path if and only if $\left(G^{\prime}, S, T\right)$ is reconfigurable.

$(\Rightarrow) G$ has a Hamiltonian v-path

Figure: Source subgraph E_{s} (left) and Target subgraph E_{t} (right).

$(\Rightarrow) G$ has a Hamiltonian v-path

We show a reconfiguration sequence from S to T.

1. Move tokens from the tail a to fill the Hamiltonian v-paths in each of the spiked graphs.
2. Move the remaining tokens on tail a to the spike edges in each of the spiked graphs, until one token remains on tail a.

$(\Rightarrow) G$ has a Hamiltonian v-path

Definition
An augmented (k, I)-claw is a (k, I)-claw where each leaf node is 1 -summed with a graph.

Definition

An augmented almost (k, l)-claw is an augmented ($k, /$)-claw where an attached graph and its attached tail are removed.
$(\Rightarrow) G$ has a Hamiltonian v-path
Lemma
Let $k \geq 1$ and $I \geq 2$. Let T be an augmented almost (k, I)-claw. If each attached graph together with its attached tail is of pathwidth 1 , then T has pathwidth k.

$(\Rightarrow) G$ has a Hamiltonian v-path

We show a reconfiguration sequence from S to T.

1. Move tokens from the tail a to to fill the Hamiltonian v-paths in each of the spiked graphs.
2. Move the remaining tokens on tail a to the spike edges in each of the spiked graphs, until one token remains on tail a.
3. Move the last token on tail a to tail b.
4. Revert steps 2 and 1 but move the tokens to tail b this time.

$(\Leftarrow)\left(G^{\prime}, S, T\right)$ is Reconfigurable

Figure: Source subgraph E_{s} (left) and Target subgraph E_{t} (right).

$(\Leftarrow)\left(G^{\prime}, S, T\right)$ is Reconfigurable: Step 1

- When we place tokens on tail b, there is at least 1 other tail where no tokens are placed on it.

Lemma
For $k \geq 1$ and $l \geq 2$, a (k, I)-claw has path-width $k+1$.

$(\Leftarrow)\left(G^{\prime}, S, T\right)$ is Reconfigurable: Step 1

- When we place tokens on tail b, there is at least 1 other tail where no tokens are placed on it.
- At least $f(k, n)-1$ tokens have to move from the source to edges of the spiked graph.
- By a counting argument, for each base vertex v, there is a token on at least one spike edge of v.

$(\Leftarrow)\left(G^{\prime}, S, T\right)$ is Reconfigurable: Step 2

- There is a spiked graph and its attached tail where the tokens placed on them induce a subgraph of pathwidth 1 .

$(\Leftarrow)\left(G^{\prime}, S, T\right)$ is Reconfigurable: Step 2

Lemma
Let $k \geq 1$ and $I \geq 2$. Let T be an augmented (k, I)-claw. If each attached graph H satisfies

- H is a tree, and
- H together with its attached tail is of pathwidth 2 or more, then T has pathwidth $k+2$ or more.

$(\Leftarrow)\left(G^{\prime}, S, T\right)$ is Reconfigurable: Step 3

- By the spiked graph lemma, there is a Hamiltonian v-path in G.

Lemma (Spiked Graph Lemma)

Let G be a graph. Let S be the k-spiked graph of a graph G. Let P be a path of length 2 or more with an endpoint p. Let G^{\prime} be a graph by 1 -summing p and some base vertex of S. If H is a subgraph of G^{\prime} satisfying

1. H is a connected,
2. H is of pathwidth 1 ,
3. $E(H)$ contains all edges of P, and
4. $E(H)$ contains at least a spike from each vertex of G, then G contains a Hamiltonian path starting at v.

Proof Sketch of Spiked Graph Lemma

Future Direction

- Allowing moving k tokens simultaneously for some fixed k.
Π is minor-closed. (G, S, T) an instance of Π-RECONFIGURATION.
- Define the quantity " minimum running buffer" (MRB) [Gao et al., 2021] of (G, S, T) as the minimum of the maximum number of token that needs to be placed in a buffer in order to reconfigure.
- MRB of Π-RECOnfiguration $=$ maximum MRB over all possible instances where G is connected.
- For FOREST-RECONFIGURATION, $M R B=0$.
- For CaCtus-reconfiguration, we think $M R B=1$.
- For PLANAR-RECONFIGURATION, we think $M R B=O(|S|)$.
- Hope to classify graph properties that have bounded MRB.

References I

[Gao et al., 2021] Gao, K., Feng, S. W., and Yu, J. (2021).
On minimizing the number of running buffers for tabletop rearrangement.
ArXiv, abs/2105.06357.
[Hanaka et al., 2020] Hanaka, T., Ito, T., Mizuta, H., Moore, B.,
Nishimura, N., Subramanya, V., Suzuki, A., and Vaidyanathan, K. (2020).

Reconfiguring spanning and induced subgraphs.
Theoretical Computer Science, 806:553-566.
[Hearn and Demaine, 2005] Hearn, R. A. and Demaine, E. D.
(2005).

Pspace-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation.
Theor. Comput. Sci., 343:72-96.

References II

[Ito et al., 2011] Ito, T., Demaine, E. D., Harvey, N. J., Papadimitriou, C. H., Sideri, M., Uehara, R., and Uno, Y. (2011).

On the complexity of reconfiguration problems.
Theoretical Computer Science, 412(12-14):1054-1065.
[Kamiński et al., 2012] Kamiński, M., Medvedev, P., and Milanič, M. (2012).

Complexity of independent set reconfigurability problems.
Theoretical Computer Science, 439:9-15.
[Scheffler, 1990] Scheffler, P. (1990).
A linear algorithm for the pathwidth of trees.
In Topics in combinatorics and graph theory, pages 613-620.
Springer.

