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Abstract

In this report, we will explore the proof by Elbracht et al. [EKT20], which showed that one
can decide a tangle through weighted vertex sets. Additionally, we will also examine Oum and
Seymour’s paper [OS06] on certifying large branch-width with f -tangle-kits. At last, we will
discuss some ideas that we could try to improve the upper bound of the weight function.

1 Introduction

Tangles are fundamental objects of study in the Graph Minors project. It serves as a notion of
high connectivity components in a graph. However, the idea of a tangle is rather abstract, so it
is natural to ask whether there exists a nice way to represent a tangle. Recently, Diestel [DHL19]
asked, given a graph G = (V,E) and a tangle τ of order k, whether there is a vertex subset X ⊂ V
that decides the tangle. In particular, for every separation (A,B) of order < k, we want to know
if there is such an X where (A,B) ∈ τ if and only if |X ∩A| < |X ∩B|.

In a recent paper, Elbracht et al. [EKT20] proved a fractional version of this. They showed
that we can decide a tangle through weighted vertex sets and we will be exploring the proof in this
report. We will also explore Oum and Seymour’s paper [OS06] on certifying large branch-width
with f -tangle-kits.

2 Deciding Tangles with Weighted Vertex Set

2.1 Weighted Decider for Tangles

To define tangles, we have to first define separations. Different from our lectures, separations are
defined in a slightly different way here, where we only consider vertex sets instead of the subgraphs.

Definition 2.1. Let G = (V,E). A separation (A,B) is a pair of vertex subsets A,B ⊆ V such
that A ∪B = V and there is no edge between A \B and B \A.
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The definition of tangle τ of order k is defined exactly the same as we did in lecture, except
the second axiom. Let (A1, B1), (A2, B2), (A3, B3) be 3 separations of order < k. Then, instead of
having G ̸= A1 ∪A2 ∪A3, we use the induced subgraph of the small sides, so G ̸= G[A1]∪G[A2]∪
G[A3].

Given a tangle τ of order k, our goal is to first show that there exists a function w : V → R+ that
assigns weight to each vertex, such that for each separation (A,B) of order < k, if w(A) < w(B),
then (A,B) ∈ τ , where w(X) =

∑
v∈X w(v) for X ⊆ V .

We need to first introduced a notion in the Graph Minors X paper. [RS91]

Definition 2.2. A separation (A,B) ∈ τ is extreme if for all separation (A′, B′) ∈ τ with A′ ⊆ A
and B ⊆ B′, then A = A′ and B = B′.

Suppose we have a weight function w : V → R+ that satisfies the constraints. Then, note that
if we have 2 different separations (A,B) and (A′, B′) in the tangle with A′ ⊆ A and B ⊆ B′

w(A′) ≤ w(A) ≤ w(B) ≤ w(B′)

Thus, it is natural to only consider the extreme separations of a tangle of order k.
In addition, we define a partial order for separations with respect to τ that is related to extreme

separations.

Definition 2.3 (Partial order of separations in a tangle). Let (A,B), (C,D) be two separations in
a tangle τ . We define (A,B) ≤ (C,D) if and only if A ⊆ C and D ⊆ B.

Note 2.4. The separation (A,B) is extreme if and only if (A,B) is maximal with respect to the
partial ordering. It is essentially pushing the small side to be as big as possible.

Before we get to the weighted decider proof, we need to prove a simple lemma.

Lemma 2.5. Let τ be a tangle in a graph G of order k. If (A,B), (C,D) are both extreme
separations, then |B ∩ (C ∩D)|+ |D ∩ (A ∩B)| > |A ∩ (C ∩D)|+ |C ∩ (A ∩B)|.

Figure 1: A rough illustration of lemma 2.5
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Proof. Let (A,B) and (C,D) be two extreme separations of τ . Note that (A∪C,B ∩D) is also a
separation under uncrossing, and that (A,B) = (C,D) ≤ (A ∪C,B ∩D). Since (A,B) and (C,D)
are extreme, (A ∪ C,B ∩ D) is not in the tangle τ . However, (B ∩ D,A ∪ C) is also not in τ ,
because otherwise, we would have A ∪ C ∪ (B ∩D) in the tangle, contradicting the second axiom.
Thus, the order of (A ∪ C,B ∩D) is ≥ k. Then, observe that

|A ∩B|+ |C ∩D| = |(A ∪ C) ∩ (B ∩D)|+ |(A ∩ C) ∩ (B ∪D)| (1)

Since |(A ∪ C) ∩ (B ∩ D)| > k, by the above equation, |(A ∩ C) ∩ (B ∪ D)| < k, and so
|(A ∪ C) ∩ (B ∩D)| < |(A ∩ C) ∩ (B ∪D)|. Then,

|(A ∪ C) ∩ (B ∩D)| < |(A ∩ C) ∩ (B ∪D)|
|(A ∪ C) ∩ (B ∩D)|+ |(A ∩B) ∩ (C ∩D)| < |(A ∩ C) ∩ (B ∪D)|+ |(A ∩B) ∩ (C ∩D)|

|A ∩ (C ∩D)|+ |C ∩ (A ∩B)| < |B ∩ (C ∩D)|+ |D ∩ (A ∩B)|

where the last step is due to equation 1.

Note 2.6. In lecture, we show that for a τ -independent set, then, for separations of small enough
order (< ord(τ )

2 ), we can decide which side is the big side, but the proof does not generalize.

This lemma shows that, in general, there are more vertices intersecting the boundary from
the big side than from the small side, which is central to our proof. In addition, we also need
the following linear programming result to prove the main theorem. For notational simplicity, we
define 0 to be the 0 vector (of corresponding size), and that x > 0 if and only if xi > 0 for each
entry of x.

Theorem 2.7 (Tucker’s Theorem [Tuc57]). Let K ∈ Rn×n be a skew symmetric matrix. Then,
there exists a real-valued vector x ∈ Rn such that

Kx ≥ 0 and x ≥ 0 and x+Kx > 0

Now, with lemma 2.5 and theorem 2.7, we can finally prove the main result below.

Theorem 2.8. Given a graph G and a tangle τ of order k in G. There exists a function w : V →
R+ such that for any separation (A,B) of order < k, (A,B) ∈ τ if and only if w(A) < w(B).

Note 2.9. w for vertex subset is defined the same way as before, namely w(X) =
∑

v∈X w(v) for
X ⊆ V .

Proof. Let (A1, B1), · · · , (Am, Bm) be the extreme separations in τ . Then, we define a matrix
M ∈ Rn×n with entries

mi,j = |Bi ∩ (Aj ∩Bj)| − |Ai ∩ (Aj ∩Bj)|.

Note that mi,j +mj,i > 0 since

|Bi ∩ (Aj ∩Bj)|+ |Bj ∩ (Ai ∩Bi)| > |Ai ∩ (Aj ∩Bj)|+ |Aj ∩ (Ai ∩Bi)|

by lemma 2.5. Thus, when we consider M +MT , the matrix has all positive entries except at the
diagonal, where they are all 0. Let

K ′ =
M +MT

2
and K = M −K ′
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then K is skew symmetric since

KT = MT −K ′T =
MT −M

2
= −M −MT

2
= −K.

By theorem 2.7, we have a real valued vector x > 0 ∈ Rn such that Kx ≥ 0 and x +Kx > 0.
Using this, we define a weight function w : V → R+ such that

w(v) =
∑

i:v∈(Ai∩Bi)

xi.

Then, with some abuse of notation, for X ⊆ V , we define w(X) =
∑

v∈X w(v).
We observe the following

(Mx)i =
n∑

j=1

xj ·mij (2)

=

n∑
j=1

xj · (|Bi ∩ (Aj ∩Bj)| − |Ai ∩ (Aj ∩Bj)|) (3)

=

n∑
j=1

xj · |Bi ∩ (Aj ∩Bj)| −
n∑

j=1

xj · |Ai ∩ (Aj ∩Bj)| (4)

=
∑
v∈Bi

w(v)−
∑
v∈Ai

w(v) (5)

= w(Bi)− w(Ai) (6)

. So, w(Bi) > w(Ai) if (Mx)i > 0, and consequently, for w to be a valid weight function, all
extreme separations (Aj , Bj) have to satisfy w(Bj) > w(Aj). This implies it is sufficient to show
(Mx) > 0.

From theorem 2.7, we know at least one entry of x is positive, since x+Kx > 0. We consider
2 following cases:

1. (≥ 2 entries in x are positive) Note that M = K +K ′ and K ′ has positive entries except at
the diagonal, and there are ≥ 2 positive entries in x, thus K ′x > 0. By theorem 2.7, Kx ≥ 0,
so M = (K +K ′)x > 0.

2. (Exactly 1 entry in x is positive) Suppose xi is the positive entry in x. For j ̸= i, we have
(Mx)j > 0 since K ′x > 0 and, by Tucker’s theorem, Kx ≥ 0. However, (K ′x)i = 0, which
means ((K+K ′)x)i could potentially be 0. To resolve this, we just pick a small enough ϵ > 0
such that w(Aj) + ϵ < w(Bj) for all j ̸ i. Then, we can increase the weight of some vertex
v ∈ Bi \Ai by ϵ, which would make w(Ai) < w(Bi), while maintaining w(Aj) < w(Bj) for all
j ̸= i. With this adjusted weight function, we then have Mx > 0.

Since both cases result in Mx > 0, we have the desired weight function w (adjusted in the second
case) as required.

Remark 2.10. The result extends directly to hypergraphs. Specifically, the proof above works for
hypergraphs, since all the arguments made here only concern vertices. In addition, the weight
function can have image in N since we can just approximate with positive rational numbers and
multiply a large enough denominator to make it integral.
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2.2 Weighted Decider for Edge-Tangles

Definition 2.11. Given a graph G = (V,E). A cut is a bipartition (A,B) of V and the order is
the number of edges with ends incident to both A and B. An edge-tangle τ of order k consists of
cuts of order < k that satisfy the following properties:

1. Only one of (A,B) or (B,A) is in τ for |(A,B)| < k.

2. For cuts (A1, B1), (A2, B2), (A3, B3) in τ , B1 ∩B2 ∩B3 ̸= ∅.

3. If (A,B) ∈ τ , then B is incident with ≥ k edges.

Here we briefly walk through the proof of an analogous theorem for edge-tangles. The proof
provided by Elbracht et al. is more general than this statement, as it is proved for k-profile (see
definition in the paper) and for graphs with weighted edges. [EKT20] However, here we will only
consider the unweighted case for simple graph, and use edge-tangle instead of k-profile as the idea
is essentially the same.

First, we need some analogous definitions defined for edge-tangle.

Definition 2.12. Given a graph G = (V,E), for each pair of vertices (a, b) ∈ V 2, we define
m : V 2 → N, where m(a, b) is the multiplicity of the edge ab. Then, we define the order in terms
of m. Given a cut (A,B) of V , the order of (A,B) is |(A,B)| =

∑
(u,v)∈A×B m(u, v).

Note 2.13. In a simple graph, m(u, v) = 1 if and only if there is an edge uv in E.

Definition 2.14 (Partial order of separations in an edge-tangle). Let (A,B), (C,D) be two cuts
in an edge-tangle τ . We define the partial ordering the same way as definition 2.3, where (A,B) ≤
(C,D) if and only if A ⊆ C and D ⊆ B. Again, we call a maximal cut with respect to this ordering
an extreme cut.

With this, we have an analogous lemma stating that on average there are ”more edges”, repre-
sented as a pair of vertices here, intersecting the big side than the small side. The proof is similar
to lemma 2.5.

Lemma 2.15. For every edge-tangle τ and extreme cuts (A,B), (C,D) ∈ τ ,∑
(u,v)∈B2∩(C×D)

m(u, v) +
∑

(u,v)∈D2∩(A×B)

m(u, v) >

∑
(u,v)∈A2∩(C×D)

m(u, v) +
∑

(u,v)∈C2∩(A×B)

m(u, v)

With this lemma and Tucker’s theorem, we can proceed to prove theorem 2.16. The proof
structure is exactly the same as the proof of theorem 2.8 with everything rephrased in the analogous
terms for edge-tangle. We outline the proof below.

Theorem 2.16. Given a graph G and an edge-tangle τ of order k in G. There exists a function
w : V → R+ such that for any cuts (A,B) of order < k, (A,B) ∈ τ if and only if w(A) < w(B).

sketch. 1. Let τ be an edge tangle of order k, (A1, B1) · · · (An, Bn) be the set of extreme cuts
in τ .
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2. We similarly define

mij =
∑

(u,v)∈B2
i ∩(Aj×Bj)

m(u, v)−
∑

(u,v)∈A2
i∩(Aj×Bj)

m(u, v)

and the matrix M = miji,j≤n accordingly.

3. Like in theorem 2.8, we can find the vector x from Tucker’s theorem. Then, we define our
weight function

w′(u, v) =
∑

i:(u,v)∈((Ai×Bi)∪(Bi×Ai))

xi ·m(u, v).

However, this is a weight function for pair of vertices, so we create an auxiliary weight function
w : V → R+ which fixes one of the vertex,

w(v) =
∑
u∈V

w′(u, v)

4. Then, we evaluate w(Bi)− w(Ai) like before, and with some computation, we have w(Bi)−
w(Ai) = 2(Mx)i instead of only (Mx)i. However, this doesn’t matter since w(Bi)−w(Ai) > 0

if and only if w(Bi)−w(Ai)
2 > 0.

5. Again, as in the proof of theorem 2.8, we have 2 cases, where there are 2 positive entries or
exactly 1 positive entry in x. If we have 2, then we are done. Otherwise, we use the same
ϵ-shifting trick to get our adjusted weight function, thus concluding our proof.

Remark 2.17. The proof above shows that it has a weighted decider for simple graphs and multi-
graphs. The only difference is that m(u, v) might potentially be greater than 1 for multi-graphs, but
it does not change the proof. However, it does not extend to hypergraphs. The main reason is that
the proof above view edges as a pair of vertices, which has a constant size 2, but for hypergraphs,
that is not necessarily the case.

2.3 Counterexample for Edge-Tangle in Hypergraphs

We demonstrate below a concrete example when an edge-tangle τ of a hypergraph has no weighted
decider.

Example 2.18. Consider the hypergraph H = (V,E), where V is the set of subsets of [10] :=
{1, · · · , 10} of size 5, and E be the set of hyperedges defined as follow:

E = {
⋃

X∈V and i∈X
{X} : i ∈ [10]}.

Then, we have 10 hyperedges, each with 126 =
(
9
4

)
5-element subsets. We want to show that H has

an edge-tangle of order 10 with no weighted decider.
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Proof. Let S be the set of all cuts of order < 10. Let (A,B) be a cut, then (A,B) ∈ S if and only
if not all 10 hyperedges have ends in both A and B, otherwise, (A,B) would have order 10. We
define ∪A :=

⋃
v∈A v and similarly for ∪B. Note that at least one of ∪A or ∪B has to contain all

of [10]. Then,it is easy to show (A,B) ∈ S if and only if one of ∪A or ∪B is a proper subset of
[10]. (From our definition of the hyperedges, parameterized by some element i ∈ [10], a hyperedge
has an end in A if and only if some subsets of A contain i, which implies i ∈ ∪A).

Then, we define our edge-tangle τ with this property so that the proper subset side is the
”small” side, namely

τ := {(A,B) ∈ S : ∪A ⊊ [10]}.

It is easy to verify that τ is an edge-tangle. For details, please refer to the original paper. [EKT20]
Now, we proceed to prove that τ has no weighted decider. Suppose, for a contradiction, τ has
a weighted decider w : V → R+. Let (Ai, Bi) be cut of V where Ai := {S ∈ V : i ̸∈ S} and
Bi = {S ∈ V : i ∈ S}, for all i ∈ [10]. Note that (Ai, Bi) ∈ τ since ∪Ai is a proper subset of [10].
Since w is a weighted decider for τ , we have w(Bi) > w(Ai) for all i ∈ [10]. Observe that∑

i∈[k]

(w(Bi)− w(Ai)) =
∑
i∈[k]

(
∑
v∈Bi

w(v)−
∑
v∈Ai

w(v))

=
∑
i∈[k]

(
∑
v∈Bi

w(v)−
∑
v∈Ai

w(v))

=
∑
i∈[k]

(
∑

v∈V :i∈v
w(v)−

∑
v∈V :i ̸∈v

w(v)

=
∑
i∈[k]

(
∑

v∈V :i∈v
w(v))−

∑
i∈[k]

(
∑

v∈V :i ̸∈v
w(v))

=
∑
v∈V

w(v)(|{i ∈ [10] : i ∈ v}|)−
∑
v∈V

w(v)(|{i ∈ [10] : i ̸∈ v}|)

=
∑
v∈V

w(v)(|{i ∈ [10] : i ∈ v}| − |{i ∈ [10] : i ̸∈ v}|)

, and further note that,∑
v∈V

w(v)(|{i ∈ [10] : i ∈ v}| − |{i ∈ [10] : i ̸∈ v}|) =
∑
v∈V

w(v)(5− (10− 5)) = 0.

However, since w is assumed to be a weighted decider,∑
i∈[k]

(w(Bi)− w(Ai)) > 0.

This is a contradiction. Thus, the edge-tangle τ of H does not have any weighted decider as
required.

Note 2.19. An analogous counterexample for matroids was independently found by Jim Geelen.
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3 Certifying Large Branch-width with f-tangle-kits

3.1 Branch-width and Tangle-kits

Definition 3.1. Let V be a finite set and f : 2V → Z. f is symmetric submodular if and only if
f(X) + f(Y ) > f(X ∩ Y ) + f(X ∪ Y ) and f(X) = f(V \X), for X,Y ⊆ Y .

Example 3.2. The connectivity function for a tangle matroid, namely

λ(X) := min(|(H1, H2)| : (H1, H2) ∈ τ and X ⊆ V (H1))

is submodular, where |(H1, H2)| is the order of (H1, H2), and τ some tangle of order k for a graph
G = (V,E). However, it is not symmetric, since λ(∅) = 0 ̸= ord(τ ) = k = λ(V ).

Now, if we define P (X) = λ(X)+λ(V \X), then P is symmetric and submodular. Let X,Y ⊆ V .

• Symmetric: P (X) = λ(X) + λ(V \X) = P (V \X).

• Submodular:

P (X) + P (Y ) =λ(X) + λ(Y ) + λ(V \X) + λ(V \ Y )

≥λ(X ∪ Y ) + λ(X ∩ Y )

+ λ((V \X) ∪ (V \ Y )) + λ((V \X) ∩ (V \ Y ))

=λ(X ∪ Y ) + λ(V \ (X ∪ Y )) + λ(X ∩ Y ) + λ(V \ (X ∩ Y ))

=P (X ∪ Y ) + P (X ∩ Y )

Definition 3.3. Let f be a symmetric submodular function. We say f is a connectivity function
if f(∅) = 0 and f({v}) ≤ 1 for all v ∈ V .

In our lectures, we have shown how a branch-decomposition of a graph relates to a tangle. In
particular, we showed the following.

Theorem 3.4. Given a graph G and a fixed k ∈ N, we can effectively find either

• A branch-decomposition of width ≤ k, or

• A tangle of order ⌈k3⌉

In fact, we can extend the idea of branch-width to matroids, and more generally, symmetric
submodular functions.

Definition 3.5. Given a branch-decomposition (T, L) of a symmetric submodular function f , where
T is a cubic tree and L a function mapping V to leaves of T . The width of a branch-decomposition
is defined as

max
(X,Y ) induced by (T\e) : e∈E[T ]

f(L−1(X))

where E[T ] are the edges of T . The branch-width of f is the minimum width over all possible
branch-decompositions of f .
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So, the natural question to ask is whether we have a similar theorem for general symmetric
submodular function. Oum and Seymour [OS06] showed that if the function is a connectivity
function, then we could find show that the connectivity function has branch-width ≥ k with a
polynomial size certificate that can be checked in polynomial time (polynomial with respect to
|V |).

Definition 3.6. Let f : 2V → Z be a connectivity function. We define the f -tangle τ of order k
to be a set of subsets of V satisfying the following 4 axioms:

1. For A ∈ τ , f(A) < k.

2. For all A ⊆ V , if f(A) < k, then only one of A or V \A is in τ .

3. If A,B,C ∈ τ , then A ∪B ∪ C ̸= V .

4. For all v ∈ V , V \ {v} ̸∈ τ .

Definition 3.7. Let f be a connectivity function. For disjoint subsets X,Y ⊆ V , we define

fmin(X,Y ) = min
X⊆U⊆(V \Y )

f(U)

We want to define a new notion called a f -tangle-kit that is similar to a f -tangle. In particular,
we want to show we have a f -tangle-kits of order k if and only if we have a f -tangle of order k.
Recall from lecture again, Robertson and Seymour [RS91] proved that the branch-width is equal to
the maximum order of tangle. So instead of dealing with a f -tangle, we can provide a f -tangle-kit
of order ≥ k + 1 as a certificate of large branch-width.

Definition 3.8. Let f be a connectivity function on subsets of some finite set V . We define the
f -tangle-kits of order k to be a pair (P, µ), where

P = {(X,Y ) : X,Y ⊆ V,X ∩ Y = ∅, fmin(X,Y ) = |X| = |Y | < k}

and
µ : P → 2V

that satisfies the following 3 axioms:

1. µ(X1, Y1) ∪ µ(X2, Y2) ∪ µ(X3, Y3) ̸= V for (X1, Y1), (X2, Y2), (X3, Y3) ∈ P .

2. for all (A,B) ∈ P , there is no Z where A ⊆ Z ⊆ V \ B, f(Z) = |A|, Z ̸⊆ µ(A,B), and
V \ Z ̸⊆ µ(B,A).

3. |µ(X,Y )| ≠ |V | − 1 for all (X,Y ) ∈ P .

Note 3.9. There is an alternative formulation for axiom 2 of f -tangle-kit: For all x ∈ V \(µ(A,B)∪
B) and y ∈ V \ (µ(B,A) ∪A), if x ̸= y, then fmin(A ∪ {x}, B ∪ {y}) > |A|).

Theorem 3.10. Let f : 2V → Z be a connectivity function. There exists a f -tangle of order k if
and only if there exists a f -tangle-kit of order k.

Before we can prove the main theorem of this section (theorem 3.10), we have to first introduce
the following lemma.
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Lemma 3.11. Let f : 2V → Z be a connectivity function. Given a Z ⊆ V , there exists X ⊆ Z and
Y ⊆ V \ Z such that fmin(X,Y ) = f(Z) and |X| = |Y | = f(Z).

Sketch. Choose X ⊆ Z to be maximal where fmin(X,V \ Z). Then, for v ∈ Z \ X, we have
|X| ≤ fmin(X ∪{v}, V \Z) ≤ |X|+1 (by lemma 3.2 in [OS06]), and since X is chosen as maximal,
fmin(X ∪ {v}, V \ Z) = |X|, instead of |X|+ 1. Consequently,

fmin(Z, V \ Z) = fmin(X ∪ {v : v ∈ Z \X}), Z) = fmin(X,Y ) = |X|.

Similarly, we choose Y ⊆ V \ Z to be maximal. By similar argument, we have

fmin(Z, V \ Z) = fmin(Z, Y ∪ {v : v ∈ (V \ Z) \ Y }) = fmin(X,Y ) = |Y |.

Since fmin(Z, V \Z) = minZ⊆U⊆Z f(U) = f(Z), so fmin(X,Y ) = f(Z) = |X| = |Y | as required.

Remark 3.12. When f is just a general symmetric submodular function, but not a connectivity
function, the induction step of lemma 3.2 of Oum and Seymour’s paper [OS06], on which our lemma
3.11 depends, will no longer be valid.

For theorem 3.10. Suppose we have a f -tangle of order k. We want to show that there is a f -
tangle-kit (P, µ) of order k. Let P = {(X,Y ) : X,Y ⊆ V,X ∩ Y = ∅, fmin(X,Y ) = |X| = |Y | < k}

Claim 3.13. For (X,Y ) ∈ P , there exists a unique maximal set Z ∈ τ such that X ⊆ Z ⊆ V \ Y
and f(Z) = fmin(X,Y )

Proof. Let Z1, Z2 ∈ τ satisfying X ⊆ Z1 ⊆ V \ Y , X ⊆ Z2 ⊆ V \ Y , and f(Z1) = f(Z2) =
fmin(X,Y ). Since X ⊆ Z1 ∩ Z2 and X ⊆ Z1 ∪ Z2, we have f(Z1 ∩ Z2) and f(Z1 ∪ Z2) both
≥ fmin(X,Y ). Note that 2fminf(X,Y ) = f(Z1)+f(Z2) ≥ f(Z1∩Z2)+f(Z1∪Z2), so f(Z1∩Z2) =
f(Z1 ∪ Z2) = fmin(X,Y ). Also, Z1 ∪ Z2 ∈ τ since V \ (Z1 ∪ Z2) would have violated f -tangle
axiom 3. Then, we can just take the union of all such Zi satisfying the above and get our unique
maximal subset Z.

With the claim, we define µ(X,Y ) = Z and µ is well defined since Z is unique w.r.t. (X,Y ).
Then, we simply have to check that this (P, µ) satisfies all the f -tangle-kit axioms.

1. Tangle-kit axiom 1 is satisfied since µ(X,Y ) ∈ τ and, for Z1, Z2, Z3 ∈ τ , Z1 ∪ Z2 ∪ Z3 ̸= V
by tangle axiom 3, so µ(X1, Y1) ∪ µ(X2, Y2) ∪ µ(X3, Y3) ̸= V .

2. Tangle-kit axiom 2 is satisfied by construction of µ and tangle axiom 2. By tangle axion
2, either Z or V \ Z is in the tangle. Suppose Z ∈ τ , then Z ⊆ µ(A,B) since µ(A,B) is
constructed to be maximal, thus a contradiction.

3. Tangle-kit axiom 3 follows directly from tangle axiom 4.

Conversely, suppose we have a f -tangle-kit (P, µ) of order k. We want to construct a f -tangle
of order k from the f -tangle-kit as follows. For Z ⊆ V with f(Z) < k, we choose (A,B) ∈ P such
that |X| = |Y | = f(Z) and X ⊆ Z ⊆ V \ Y . We know this exists because of lemma 3.11. Then, if
Z ⊆ µ(A,B), Z ∈ τ ; otherwise, V \ Z ∈ τ . This is indeed well-defined, but we won’t verify here
(see [OS06] for details). We have to then verify that this satisfies all the f -tangle axioms.
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1. Tangle axiom 1 is satisfied by construction.

2. Similarly, since the construction is well-defined, tangle axiom 2 is automatically satisfied.

3. For tangle axiom 3, assume A1, A2, A3 ∈ τ , then by construction, each A1, A2, A3 are sub-
sets of some µ(A1, B1), µ(A2, B2), µ(A3, B3). Thus, A1 ∪ A2 ∪ A3 ⊆ µ(A1, B1 ∪ µ(A2, B2) ∪
µ(A3, B3) ̸= V by tangle-kit axiom 1 as required.

4. For tangle axiom 4, suppose for a contradiction that V \ {v} ∈ τ for some v ∈ V , then, there
is some (X,Y ) ∈ P of the f -tangle-kit such that V \{v} ⊆ µ(X,Y ). This means µ(X,Y ) = V
or µ(X,Y ) = V \ {v}, which contradicts tangle-kit axiom 1 and 3 respectively.

Thus, we have shown there is a f -tangle-kit of order k if and only if there exists a f -tangle of order
k as required.

Theorem 3.14. Let f : 2V → Z be a connectivity function with branch-width > k, for some fixed
k. Then, we can find a polynomial-sized certificate that it has branch-width > k that can be verified
in polynomial time, with respect to |V |.

Proof. Since a f -tangle of order k exists if and only if a f -tangle-kit of order k exists, by theorem
3.10, it is sufficient to provide a f -tangle-kit of order ≥ k+1 as a certificate that f has branch-width
> k. Now, suppose we are given (P, µ) as a certificate, we need to show it is of polynomial size,
and can be verified in polynomial time.

Note that |P | ≤
∑k

i=1

(|V |
i

)2
since each pair of disjoint set (A,B) ∈ P must have |A| = |B| by

definition. Since k is fixed, the certificate size is polynomial in |V | as required.
Now, we need to show it can be checked in polynomial time. It is same as checking whether the

certificate (P, µ) actually satisfy the f -tangle-kit axioms. It is known that we can calculate fmin

in polynomial time in |V | with submodular function minimization. Verifying the axioms 1 and 3
is simply polynomial, and for axiom 2, we consider its alternative formulation (see note 3.9), and
then use the fact that fmin can be computed in polynomial time.

Remark 3.15. Given a connectivity function f and a fixed k, it is in NP∩ coNP to decide whether
f has branch-width at most k. The above theorem shows that this decision problem is in coNP, and
since we can simply verify a branch-decomposition in polynomial time, if given one, this is also in
NP.

4 Conclusion

Here we suggest some ideas that might help improve the weight function, as the upper-bound is
not polynomially bounded by the number of vertices. Below are some ideas or questions that we
might be able further explore.

1. What about graphs under some restrictions, or simply different graph classes like planar
graphs? Can we find a {0, 1}-decider for those graphs? For instance, Elbracht et al. showed
that there exists a {0, 1}-decider for k-connected graphs with ≥ 4(k) vertices. [Elb17]
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2. Maybe only a subset of the extreme separations can already capture the essence that big sides
intersect more with the boundary. For instance, in section 3.1, we only need a number, that
is polynomial in |V |, of disjoint sets (X,Y ) in the f -tangle-kits, whereas for f -tangles, this
might be exponential in |V |.

3. Can we have some polynomial upper bound of the number of useful extreme separations? It
seems to me that all the boundaries of extreme separations intersect each other, so maybe
we can do something with the intersection of those boundaries, without considering each of
them specifically.

4. For a specific graph class, like planar, maybe we can consider contracting to a grid, and each
vertex stores some weight with respect to the number of contractions for that vertex.

5. Can we (and how to) view this problem about tangle in its dual notion, using branch-
decomposition and its branch-width?
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