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1 Overview

Tangles are fundamental objects of study in the Graph Minors project. It serves as a
notion of high connectivity components in a graph. However, the idea of a tangle is
rather abstract, so it is natural to ask whether there exists a nice way to represent a
tangle. Recently, Diestel [1] asked, given a graph G = (V, E') and a tangle 7 of order
k, whether there is a vertex subset X C V that decides the tangle. In particular, for
every separation (A, B) of order < k, we want to know if there is such an X where
(A,B) € T if and only if | X NA| < |X N B|.

In a recent paper, Elbracht et al. [3] proved a fractional version of this. They
showed that we can decide a tangle through weighted vertex sets and we will be ex-
ploring the proof in this report. Additionally, we will also explore Oum and Seymour’s
paper [4] on certifying large branch-width with f-tangle-kits. At last, we will discuss
some ideas that we could try to improve on the upper bound of the weight function.
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2 Weighted Decider for Tangles

To define tangles, we have to first define separations. Different from our lectures,
separations are defined in a slightly different way here, where we only consider vertex
sets instead of the subgraphs.

Definition 2.1 Let G = (V,E). A separation (A, B) is a pair of vertex subsets
A, B CV such that AU B =V and there is no edge between A\ B and B\ A.

The definition of tangle 7 of order k is defined exactly the same as we did in
lecture, except the second axiom. Let (Ay, By), (A2, By), (As, Bs) be 3 separations of
order < k. Then, instead of having G # A; U A U A3, we use the induced subgraph
of the small sides, so G # G[A;1] U G[A3] U G[A3].

Given a tangle T of order k, our goal is to first show that there exists a function
w:V — R that assigns weight to each vertex, such that for each separation (A, B)
of order < k, if w(A) < w(B), then (A, B) € T, where w(X) = >, cx w(v) for X C V.

We need to first introduced a notion in the Graph Minors X paper. [5]

Definition 2.2 A separation (A, B) € T is extreme if for all separation (A, B") € T
with A C Aand BC B’, then A= A" and B= 5.

Suppose we have a weight function w : V' — RT that satisfies the constraints.
Then, note that if we have 2 different separations (A, B) and (A’, B') in the tangle
with A’ C Aand BC B’

w(A") <w(A) < w(B) < w(B)

Thus, it is natural to only consider the extreme separations of a tangle of order k.
In addition, we define a partial order for separations with respect to 7 that is
related to extreme separations.

Definition 2.3 (Partial order of separations in a tangle)
Let (A, B),(C, D) be two separations in a tangle 7. We define (A, B) < (C, D) if
and only if A C C' and D C B.

Note The separation (A, B) is extreme if and only if (A, B) is maximal with respect
to the partial ordering. It is essentially pushing the small side to be as big as possible.

Before we get to the weighted decider proof, we need to prove a simple lemma.

Lemma 2.4 Let 7 be a tangle in a graph G of order k. If (A, B),(C,D) are
both extreme separations, then |[BN(CN D)+ |DN(ANB)| > |AN(CND)|+
IC N (AN B)|.
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Figure 1: A rough illustration of lemma 2.4

Proof. Let (A, B) and (C, D) be two extreme separations of 7. Note that (AUC, BN
D) is also a separation under uncrossing, and that (A, B) = (C, D) < (AUC, BN D).
Since (A, B) and (C, D) are extreme, (AUC, BN D) is not in the tangle 7. However,
(BN D,AuUC) is also not in T, because otherwise, we would have AU C U (B N D)
in the tangle, contradicting the second axiom. Thus, the order of (AU C, BN D) is
> k. Then, observe that

IANB|+|CND|=[(AuC)N(BND)|+|(ANnC)Nn(BUD)| (1)

Since [(AUC) N (BN D)| > k, by the above equation, [(ANC)N (BUD)| < k,
and so |(AUC)N(BND)| < [(ANnC)N(BUD)|. Then,

(AuC)N(BND)|<|[(ANnC)N(BUD)|
(AUC)N(BND)|+|(ANnB)N(CND)|<|(ANnC)N(BUD)|+|(AnB)N(CND)|
IAN(CND)|+[CN(ANB)|<|BN(CND)|+|DnN(ANB)|

where the last step is due to equation 1. 0

Note In lecture, we show that for a 7-independent set, then, for separations of small

enough order (< M), we can decide which side is the big side, but the proof does

2
not generalize.
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This lemma shows that, in general, there are more vertices intersecting the bound-
ary from the big side than from the small side, which is central to our proof. In
addition, we also need the following linear programming result to prove the main
theorem. For notational simplicity, we define 0 to be the 0 vector (of corresponding
size), and that x > 0 if and only if x; > 0 for each entry of .

Theorem 2.5 (Tucker’s Theorem [6])
Let K € R™™" be a skew symmetric matrix. Then, there exists a real-valued vector
x € R™ such that

Kr>0andz>0andz+ Kz >0

Now, with lemma 2.4 and theorem 2.5, we can finally prove the main result below.

Theorem 2.6 Given a graph G and a tangle 7 of order k£ in G. There exists a
function w : V' — RT such that for any separation (A, B) of order < k, (A, B) € T if
and only if w(A) < w(B).

Note w for vertex subset is defined the same way as before, namely w(X) = >, cx w(v)
for X C V.

Proof. Let (A1, B1),- -, (Am, Bim) be the extreme separations in 7. Then, we define
a matrix M € R™™" with entries

m;; = |B; N (A; N Bj)| — |A; N (A; N By).
Note that m; ; +m;; > 0 since
|BZ N (A] N BJ)| + |BJ N (Az N BZ>| > |A1 N (Aj N B])| + ‘AJ N (Az N Bz)|

by lemma 2.4. Thus, when we consider M + M7, the matrix has all positive entries
except at the diagonal, where they are all 0. Let

_M+MT
N 2

K’ and K =M — K’

then K is skew symmetric since

KT:MT—K’T:MT;M:—M;MT:—K.

By theorem 2.5, we have a real valued vector x > 0 € R” such that Kz > 0 and
x + Kx > 0. Using this, we define a weight function w : V' — R* such that

wv)= Y

i:UE(AiﬂBi)

Then, with some abuse of notation, for X C V', we define w(X) = 3, cx w(v).
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We observe the following

- Z (1B (4,0 By)] — A0 (4,1 By)) 3)
=i;xj~|Bm<AmBj>|—f:lmAm(AmBm ()
= ¥ ()= 3 i (5)
— w(B)) — w(A) (©)

So, w(B;) > w(A;) if (Mzx); > 0, and consequently, for w to be a valid weight
function, all extreme separations (A;, B;) have to satisfy w(B;) > w(A;). This implies
it is sufficient to show (Mz) > 0.

From theorem 2.5, we know at least one entry of x is positive, since x + Kz > 0.
We consider 2 following cases:

1. (> 2 entries in z are positive) Note that M = K+ K’ and K’ has positive entries
except at the diagonal, and there are > 2 positive entries in x, thus K’z > 0.
By theorem 2.5, Kz > 0,s0 M = (K + K')x > 0.

2. (Exactly 1 entry in x is positive) Suppose x; is the positive entry in x. For
J # 1, we have (Mz); > 0 since K’z > 0 and, by Tucker’s theorem, Kz > 0.
However, (K'x); = 0, which means ((K + K’)x); could potentially be 0. To
resolve this, we just pick a small enough e > 0 such that w(A;) + ¢ < w(B;)
for all j /4. Then, we can increase the weight of some vertex v € B; \ A; by
€, which would make w(4;) < w(B;), while maintaining w(A;) < w(B,) for all
j # 1. With this adjusted weight function, we then have Mz > 0.

Since both cases result in Mz > 0, we have the desired weight function w (adjusted
in the second case) as required. U

Remark 2.7 The result extends directly to hypergraphs. Specifically, the proof
above works for hypergraphs, since all the arguments made here only concern vertices.
In addition, the weight function can have image in N since we can just approximate
with positive rational numbers and multiply a large enough denominator to make it
integral.

3 Weighted Decider for Edge-Tangles

Definition 3.1 Given a graph G = (V, E). A cut is a bipartition (A, B) of V' and
the order is the number of edges with ends incident to both A and B. An edge-tangle
T of order k consists of cuts of order < k that satisfy the following properties:

5
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1. Only one of (A, B) or (B,A) isin T for |(A, B)| < k.
2. For cuts (Al, Bl), (AQ, Bg), (Ag, Bg) in 7—, Bl N B2 N Bg # @
3. If (A, B) € T, then B is incident with > k edges.

Here we briefly walk through the proof of an analogous theorem for edge-tangles.
The proof provided by Elbracht et al. is more general than this statement, as it is
proved for k-profile (see definition in the paper) and for graphs with weighted edges.
[3] However, here we will only consider the unweighted case for simple graph, and use
edge-tangle instead of k-profile as the idea is essentially the same.

First, we need some analogous definitions defined for edge-tangle.

Definition 3.2 Given a graph G = (V, E), for each pair of vertices (a,b) € V?,
we define m : V? — N, where m(a,b) is the multiplicity of the edge ab. Then, we
define the order in terms of m. Given a cut (A, B) of V, the order of (A, B) is

|(A7 B)’ = Z(u,v)GAxB m(uu U)'
Note In a simple graph, m(u,v) = 1 if and only if there is an edge wv in E.

Definition 3.3 (Partial order of separations in an edge-tangle)

Let (A, B), (C, D) be two cuts in an edge-tangle 7. We define the partial ordering the
same way as definition 2.3, where (A, B) < (C, D) if and only if A C C and D C B.
Again, we call a maximal cut with respect to this ordering an extreme cut.

With this, we have an analogous lemma stating that on average there are "more
edges', represented as a pair of vertices here, intersecting the big side than the small
side. The proof is similar to lemma 2.4.

Lemma 3.4 For every edge-tangle 7 and extreme cuts (A, B),(C,D) € T,

> m(u,v) + > m(u,v) >

(u,0)€B2N(C'x D) (u,v)ED2N(AXB)
Z m(u,v) + Z m(u, U)
(u,v)€A2N(C'x D) (u,0)€C2N(AXB)

With this lemma and Tucker’s theorem, we can proceed to prove theorem 3.5.
The proof structure is exactly the same as the proof of theorem 2.6 with everything
rephrased in the analogous terms for edge-tangle. We outline the proof below.

Theorem 3.5 Given a graph G and an edge-tangle 7 of order k in GG. There exists
a function w : V' — R* such that for any cuts (A4, B) of order < k, (A, B) € T if and
only if w(A) < w(B).

Proof (sketch).
1. Let T be an edge tangle of order k, (A1, By) - - - (A,, B,) be the set of extreme
cuts in 7.
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2. We similarly define

mij = > m(u,v) — > m(u,v)

(’ZL,”U)EBEQ(AJ' ><B]') (’U,,”U)EA?Q(AJ' ><B]')
and the matrix M = m;j, ;<, accordingly.

3. Like in theorem 2.6, we can find the vector x from Tucker’s theorem. Then, we
define our weight function

w'(u,v) = > x; - m(u,v).
i:(u,v)e((Ai><Bi)U(Bi><A1-))
However, this is a weight function for pair of vertices, so we create an auxiliary
weight function w : V' — R™ which fixes one of the vertex,

w(v) = Z w'(u,v)

ueV

4. Then, we evaluate w(B;) — w(A;) like before, and with some computation, we
have w(B;) — w(A;) = 2(Mz); instead of only (Mzx);. However, this doesn’t
matter since w(B;) — w(A;) > 0 if and only if M > 0.

5. Again, as in the proof of theorem 2.6, we have 2 cases, where there are 2
positive entries or exactly 1 positive entry in z. If we have 2, then we are done.
Otherwise, we use the same e-shifting trick to get our adjusted weight function,
thus concluding our proof. O

Remark 3.6 The proof above shows that it has a weighted decider for simple graphs
and multi-graphs. The only difference is that m(u,v) might potentially be greater
than 1 for multi-graphs, but it does not change the proof. However, it does not
extend to hypergraphs. The main reason is that the proof above view edges as a pair
of vertices, which has a constant size 2, but for hypergraphs, that is not necessarily
the case.

4 Counterexample for Edge-Tangle in Hypergraphs

We demonstrate below a concrete example when an edge-tangle 7 of a hypergraph
has no weighted decider.

Example 4.1 Consider the hypergraph H = (V| E), where V is the set of subsets of
[10] := {1,--- ,10} of size 5, and F be the set of hyperedges defined as follow:

E={ |J {X}:ie[o]}.

XeV and i€ X

Then, we have 10 hyperedges, each with 126 = (Z) 5-element subsets. We want to
show that H has an edge-tangle of order 10 with no weighted decider.

7



Deciding Tangle with Weighted Vertex Sets Jeffrey Kam

Proof. Let S be the set of all cuts of order < 10. Let (A, B) be a cut, then (A, B) € S
if and only if not all 10 hyperedges have ends in both A and B, otherwise, (A, B)
would have order 10. We define UA := J,c4 v and similarly for UB. Note that at
least one of UA or UB has to contain all of [10]. Then,it is easy to show (A, B) € S
if and only if one of UA or UB is a proper subset of [10]. (From our definition of the
hyperedges, parameterized by some element ¢ € [10], a hyperedge has an end in A if
and only if some subsets of A contain i, which implies i € UA).

Then, we define our edge-tangle 7 with this property so that the proper subset
side is the "small" side, namely

T:={(A,B) e S:UAC[10]}.

It is easy to verify that 7 is an edge-tangle. For details, please refer to the original
paper. [3] Now, we proceed to prove that 7 has no weighted decider. Suppose, for
a contradiction, 7 has a weighted decider w : V' — R*. Let (4;, B;) be cut of V
where A; :={S eV :ig Stand B; ={S €V :i e S}, for all i € [10]. Note that
(A;, B;) € T since UA; is a proper subset of [10]. Since w is a weighted decider for
T, we have w(B;) > w(A;) for all i € [10]. Observe that

> (w(Bi) —w(A) =3 (3 wv) = 3 w®))

i€[k] i€[k] veB; vEA;
= T3 ) = 3 wl)
=> (> wv)— > w)
i€[k] veV:icv veV:igy
=2 (> ww) =2 (> w)
1€[k] veV:iiev 1€[k] veV:iigv
= % v) (i € [10] - iev}\)—sz(v)(!{ie [10] : & & v}])
_2 v)(|{i € [10]: i € v} — [{i € [10] : i € v}|)

, and further note that,

S w)(|{i € 10 i € v} — [{i € [10] i & v}]) = 3 w(v)(5 — (10— 5)) = 0.

veV veV

However, since w is assumed to be a weighted decider,

> (w(Bi) —w(A)) > 0.

1€[k]

This is a contradiction. Thus, the edge-tangle 7 of H does not have any weighted
decider as required. O

Note An analogous counterexample for matroids was independently found by Jim
Geelen.
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5 Branch-width and Tangle-kits

Definition 5.1 Let V be a finite set and f : 2V — Z. f is symmetric submodular if
and only if f(X)+f(Y)> f(XNY)+f(XUY)and f(X) = f(V\X), for X,Y CY.

Example 5.2 The connectivity function for a tangle matroid, namely
ANX) :=min(|(Hy, Hy)| : (Hy,Hs) € T and X C V(Hy))

is submodular, where |(Hy, Hs)| is the order of (H;, Hy), and T some tangle of order
k for a graph G = (V, E)). However, it is not symmetric, since A\(()) = 0 # ord(T) =
k= \V).
Now, if we define P(X) = A(X)+A(V'\ X), then P is symmetric and submodular.
Let X,Y C V.
o Symmetric: P(X) = AX)+ AV \X)=P(V\ X).
« Submodular:
PX)+PY)=ANX)+AY)+ AV \X)+ AV \Y)
>AXUY)+AMXNY)
FA(VAX)UVAY) +A(VAX) N (VY))
=AXUY)+ AV (XUY)+AMXNY)+ AV (XNY))
=P(XUY)+P(XNY)

Definition 5.3 Let f be a symmetric submodular function. We say f is a connec-
tivity function if f(0) =0 and f({v}) <1forallv e V.

In our lectures, we have shown how a branch-decomposition of a graph relates to
a tangle. In particular, we showed the following.

Theorem 5.4 Given a graph G and a fixed k € N, we can effectively find either
o A branch-decomposition of width < k, or

« A tangle of order [%]

In fact, we can extend the idea of branch-width to matroids, and more generally,
symmetric submodular functions.

Definition 5.5 Given a branch-decomposition (7, L) of a symmetric submodular
function f, where T' is a cubic tree and L a function mapping V' to leaves of T". The
width of a branch-decomposition is defined as
max (LX)
(X,Y) induced by (T'\e) : e€E[T]
where E[T] are the edges of T'. The branch-width of f is the minimum width over all
possible branch-decompositions of f.
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So, the natural question to ask is whether we have a similar theorem for general
symmetric submodular function. Oum and Seymour [4] showed that if the function
is a connectivity function, then we could find show that the connectivity function has
branch-width > k with a polynomial size certificate that can be checked in polynomial
time (polynomial with respect to |V]).

Definition 5.6 Let f : 2 — Z be a connectivity function. We define the f-tangle
T of order k to be a set of subsets of V' satisfying the following 4 axioms:

1. For Ae T, f(A) <k.

2. Forall ACV, if f(A) <k, then only one of Aor V\ Aisin T.
3. It A,B,CeT,then AUBUC # V.

4. Forallve V, V\{v} &T.

Definition 5.7 Let f be a connectivity function. For disjoint subsets X, Y C V| we
define
(X, Y) = i
Jrin (X, Y XCUC(Y) 1)

We want to define a new notion called a f-tangle-kit that is similar to a f-tangle.
In particular, we want to show we have a f-tangle-kits of order k if and only if we
have a f-tangle of order k. Recall from lecture again, Robertson and Seymour [5]
proved that the branch-width is equal to the maximum order of tangle. So instead of
dealing with a f-tangle, we can provide a f-tangle-kit of order > k+1 as a certificate
of large branch-width.

Definition 5.8 Let f be a connectivity function on subsets of some finite set V. We
define the f-tangle-kits of order k to be a pair (P, ), where

P={(X,Y): XY CV,.XNY =0, frin(X,Y) = [X]| = [V < k}

and
p:P—2v

that satisfies the following 3 axioms:
L. M(Xla Yl) U M(X27 )/2) U :LL(X37}/3) 7& V for (X17 Y1)7 (X27 YQ)? (X37 )/3) ep.

2. forall (A, B) € P, thereisno Z where A C Z C V\B, f(Z) = |A|, Z € u(A, B),
and V\ Z & u(B,A).

3. (X, Y)| #|V]—1forall (X,Y) e P.

Note There is an alternative formulation for axiom 2 of f-tangle-kit: For all = €
VA\(u(A, B)UB) and y € V\(u(B, A)UA), if v # y, then frnin(AU{z}, BU{y}) > |A]).

10
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Theorem 5.9 Let f: 2V — Z be a connectivity function. There exists a f-tangle of
order k if and only if there exists a f-tangle-kit of order k.

Before we can prove the main theorem of this section (theorem 5.9), we have to
first introduce the following lemma.

Lemma 5.10 Let f : 2 — Z be a connectivity function. Given a Z C V, there
exists X C Z and Y C V' \ Z such that f,,;(X,Y) = f(Z) and |X| = |Y| = f(2).

Proof (Sketch).

Choose X C Z to be maximal where f,;,(X,V \ Z). Then, for v € Z\ X, we have
| X| < frnin(X U{v},V\Z) <|X]|+1 (by lemma 3.2 in [4]), and since X is chosen as
maximal, fr.(X U{v},V \ Z) =|X], instead of | X| + 1. Consequently,

frin(Z,V\Z) = frnin(X U{v:ve Z\ X}),Z) = frnin(X,Y) =|X].
Similarly, we choose Y C V' \ Z to be maximal. By similar argument, we have
Jfmin(Z,V\Z) = frnin(Z, Y U{v:v € (V\Z2)\Y}) = frin(X,Y) =Y.

Since frmin(Z,V \ Z) = mingcycz f(U) = f(Z), so fmn(X,Y) = f(Z) = |X]| = |Y]|

as required. ([l

Remark 5.11 When f is just a general symmetric submodular function, but not a
connectivity function, the induction step of lemma 3.2 of Oum and Seymour’s paper
[4], on which our lemma 5.10 depends, will no longer be valid.

Proof (For theorem 5.9).

Suppose we have a f-tangle of order k. We want to show that there is a f-tangle-kit
(P,p) of order k. Let P={(X,Y): X, Y CV,XNY =0, f,in(X,Y) = |X| = Y] <
k}

Claim For (X,Y) € P, there exists a unique maximal set Z € T such that X C

Proof. Let Zy,Z, € T satistying X C Z; CV\Y, X C Z, CV\Y, and f(Z;) =
f(Z3) = fomn(X,Y). Since X C Z; N Zy and X C Z; U Zy, we have f(Z; N Zy)
and f(Z; U Zy) both > f,.n(X,Y). Note that 2. f(X,Y) = f(Z1) + f(Z) >
f(Zl N ZQ) +f(Zl UZQ), SO f(Zl ﬂZQ) = f(Zl UZQ) = fmm(Xa Y) AISO, Zl UZQ € T
since V'\ (Z1 U Z3) would have violated f-tangle axiom 3. Then, we can just take the
union of all such Z; satisfying the above and get our unique maximal subset Z. [

With the claim, we define p(X,Y) = Z and pu is well defined since Z is unique

w.r.t. (X,Y). Then, we simply have to check that this (P, i) satisfies all the f-tangle-
kit axioms.

11
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1. Tangle-kit axiom 1 is satisfied since u(X,Y) € T and, for Zy,2,,7Z3 € T,
Z1UZyU Zy # V by tangle axiom 3, so u( X1, Y1) U p(Xa, Yo) U u( X3, Ys) # V.

2. Tangle-kit axiom 2 is satisfied by construction of px and tangle axiom 2. By
tangle axion 2, either Z or V' \ Z is in the tangle. Suppose Z € T, then
Z C u(A, B) since u(A, B) is constructed to be maximal, thus a contradiction.

3. Tangle-kit axiom 3 follows directly from tangle axiom 4.

Conversely, suppose we have a f-tangle-kit (P, u) of order k. We want to construct
a f-tangle of order k from the f-tangle-kit as follows. For Z C V' with f(Z) < k, we
choose (A, B) € P such that | X| = |Y| = f(Z) and X C Z C V' \ Y. We know this
exists because of lemma 5.10. Then, if Z C u(A, B), Z € T; otherwise, V \ Z € T.
This is indeed well-defined, but we won'’t verify here (see [4] for details). We have to
then verify that this satisfies all the f-tangle axioms.

1. Tangle axiom 1 is satisfied by construction.

2. Similarly, since the construction is well-defined, tangle axiom 2 is automatically
satisfied.

3. For tangle axiom 3, assume A;, Ay, A3 € T, then by construction, each Ay, Ay, A3
are subsets of some (A1, By), u(As, Bs), 1(As, B3). Thus, A; U Ay U Ay C
((Aq, By U p(As, Bo) U p(As, Bs) # V by tangle-kit axiom 1 as required.

4. For tangle axiom 4, suppose for a contradiction that V'\{v} € T for some v € V,
then, there is some (X,Y’) € P of the f-tangle-kit such that V'\ {v} C u(X,Y).
This means u(X,Y) =V or u(X,Y) = V \ {v}, which contradicts tangle-kit
axiom 1 and 3 respectively.

Thus, we have shown there is a f-tangle-kit of order k if and only if there exists a
f-tangle of order k as required. O

Theorem 5.12 Let f : 2V — Z be a connectivity function with branch-width > k,
for some fixed k. Then, we can find a polynomial-sized certificate that it has branch-
width > k that can be verified in polynomial time, with respect to |V|.

Proof. Since a f-tangle of order k exists if and only if a f-tangle-kit of order k exists,
by theorem 5.9, it is sufficient to provide a f-tangle-kit of order > k+1 as a certificate
that f has branch-width > k. Now, suppose we are given (P, i) as a certificate, we
need to show it is of polynomial size, and can be verified in polynomial time.

Note that |P| < 3F (":l)Q since each pair of disjoint set (A, B) € P must have
|A| = |B| by definition. Since k is fixed, the certificate size is polynomial in |V as
required.

Now, we need to show it can be checked in polynomial time. It is same as check-
ing whether the certificate (P, u) actually satisfy the f-tangle-kit axioms. It is known
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that we can calculate f,,;, in polynomial time in |V| with submodular function min-
imization. Verifying the axioms 1 and 3 is simply polynomial, and for axiom 2, we
consider its alternative formulation (see note 6), and then use the fact that f,,;, can
be computed in polynomial time. O

Remark 5.13 Given a connectivity function f and a fixed k, it is in NP N coNP to
decide whether f has branch-width at most k. The above theorem shows that this
decision problem is in coNP, and since we can simply verify a branch-decomposition
in polynomial time, if given one, this is also in NP.

6 Some Ideas for Improving Upper Bound

Here we suggest some ideas that might help improve the weight function, as the
upper-bound is not polynomially bounded by the number of vertices. Below are some
ideas or questions that we might be able further explore.

1. What about graphs under some restrictions, or simply different graph classes
like planar graphs? Can we find a {0, 1}-decider for those graphs? For instance,
Elbracht et al. showed that there exists a {0, 1}-decider for k-connected graphs
with > 4(k) vertices. [2]

2. Maybe only a subset of the extreme separations can already capture the essence
that big sides intersect more with the boundary. For instance, in section 5, we
only need a number, that is polynomial in |V, of disjoint sets (X,Y) in the
f-tangle-kits, whereas for f-tangles, this might be exponential in |V|.

3. Can we have some polynomial upper bound of the number of useful extreme
separations? It seems to me that all the boundaries of extreme separations
intersect each other, so maybe we can do something with the intersection of
those boundaries, without considering each of them specifically.

4. For a specific graph class, like planar, maybe we can consider contracting to a
grid, and each vertex stores some weight with respect to the number of contrac-
tions for that vertex.

5. Can we (and how to) view this problem about tangle in its dual notion, using
branch-decomposition and its branch-width?
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