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Abstract

Within the family of Subgraph reconfiguration problems, we prove a new complexity
result for caterpillar subgraphs, and attempt to prove the same result for a closely related graph
property. Specifically, we show that the edge variant of the Caterpillar reconfiguration
problem is NP-hard under the TJ rule, and attempt to prove the same result for the k-bounded
path-width tree reconfiguration problem.

1 Introduction

Consider a graph where each node corresponds to a feasible solution of an instance of a search
problem P , and edges exist between two nodes if the feasible solutions corresponding to the nodes
are “adjacent” according to some reconfiguration rule A. We call this the reconfiguration graph for
P and A. In the reachability problem for P and A, given source and target solutions to P , we want
to determine whether or not there exists a path between their corresponding nodes. If such a path
exists, we call this the reconfiguration sequence between the source and target solutions, where each
edge on the path corresponds to a reconfiguration step.

In particular, subgraph reconfiguration describes a family of reachability problems where feasible
solutions are subgraphs (of an input graph) that satisfy a specified graph structure property Π.
Each problem in the family can be specified by how the the node set and edge set are defined in
the reconfiguration graph. Note that we use the term node for reconfiguration graphs and vertex
for input graphs.

If a feasible solution (subgraph and hence node) is represented by an edge subset of the input
graph, we call this the edge variant. There is also the induced variant and spanning variant for
when a subgraph is represented by a vertex subset, which we omit for brevity.

Since a feasible solution is represented by a subset of edges or nodes, we can consider that there
are tokens placed on the edges or nodes in the subset. A reconfiguration step (edge) can then be
described by rules for how these tokens can be moved or changed. One rule is called token-jumping
(TJ), where a token can move to any other unoccupied edge or node. Another rule is called token-
sliding (TS), where a token can move to any other adjacent edge or node (we say two edges are
adjacent if they share a common vertex). Lastly, there is also the token-addition-and-removal rule
(TAR), where in one step we can either add or remove a token [HIM+20].
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In this paper, we study the complexity of subgraph reconfiguration for the edge variant under
the TJ rule for subgraphs with the property of being connected and with path-width ≤ k for some
fixed k. We first prove a result for when the subgraph is of path-width 1, i.e. a caterpillar. Then,
we attempt to generalize our results to trees with path-width ≤ k.

1.1 Main Result and Proof Overview

Our main result is Theorem 3.4 − that the Caterpillar reconfiguration problem under the
TJ rule is NP-hard. An overview of the proof is that we want to reduce the Hamiltonian v-path
problem to the Caterpillar reconfiguration problem in polynomial time. For this reduction:

1. We create an auxiliary graph G′ of polynomial size from the input graph G for which we want
to solve the Hamiltonian v-path problem.

2. We show that G has a Hamiltonian path starting at v if and only if there exists a reconfigu-
ration sequence between a source and target subgraph of our choosing in G′.

1.2 Related Work

The Subgraph reconfiguration problem was first proposed by Hanaka et al. [HIM+20], which
includes results for graph properties such as paths, trees, and cycles. There has also been some
work on a related path reconfiguration problem under the TS rule by Demaine et al. [DEH+19],
but their sliding rule concerns sliding the path as a whole, as opposed to sliding individual tokens.
Here we show a summary of our contributions and the current results related the problem.

Property Edge Variant - TJ Edge Variant - TS

Path NP-hard [HIM+20] Unknown

Cycle P [HIM+20] P [HIM+20]

Tree P [HIM+20] Unknown

Caterpillar NP-hard [Theorem 3.4] Unknown
k-bounded

Path-width Tree NP-hard? [Theorem 3.15] Unknown

Any Property XP [HIM+20] XP [HIM+20]

Note that for ?, we have not yet completed the entire proof as some sections only have proof
sketches.

1.3 Organization

In Section 3.1, we provide a proof of the NP-hardness of the Caterpillar reconfiguration
problem. In Section 3.2, we provide a proof of the NP-hardness of the k-bounded path-width
tree reconfiguration problem. In Section 4, we conclude and present some open problems.

2 Preliminaries

2.1 General Facts and Notations

Let Π be a graph property (e.g. “a graph is a path”). We will refer to the edge variant of
Subgraph reconfguration for the property Π as the Π reconfiguration problem. Let G be
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an input graph which is simple. Then, a tuple (G,Es, Et) is an instance of the Π reconfiguration
problem, where Es, Et are the edge subsets for the source and target solutions respectively, when
the subgraph induced by Es and Et satisfies property Π. We say that (G,Es, Et) is reconfigurable
if there exists a reconfiguration sequence from Es to Et. Otherwise, we say it is not reconfigurable.

A Hamiltonian path in a graph G is a path that visits every vertex in G exactly once. The
Hamiltonian v-path problem is a decision problem for whether or not a Hamiltonian path starting
at the vertex v exists in a given graph G. The Hamiltonian v-path problem is NP-complete by
a simple reduction to the standard Hamiltonian path problem, and is still NP-complete when
restricted to connected and non-empty graphs.

A caterpillar is a tree in which the removal of all the leaf vertices of the tree results in a path.
We call the resulting path the spine of the caterpillar, and we call the removed vertices the legs of
the caterpillar. Moreover, if a leg is adjacent to an endpoint of the spine, we call that leg an end
of the caterpillar. One characterization of caterpillars are connected graphs of path-width 1.

Let G = (V,E) be a graph, and fix an ordering of the vertices v1, · · · , vn. Let P = p1p2 · · · pm
be a path. For each pi ∈ V (P ), define a bag Bi ⊆ V to be a subset of the vertex set. The sequence
(Bi : 1 ≤ i ≤ m) path decomposition of G if the following holds

1. For uv ∈ E, {u, v} ⊆ Bi for some i ∈ [n], and

2. Let u, v ∈ V . If u ∈ Bi and u ∈ Bj for some i, j ∈ [n] and i ≤ j, then u ∈ Bk for all i ≤ k ≤ j.

The width of the path decomposition is maxvi∈V (|Bi| + 1). The path-width of G, denoted pw(G),
is defined as the minimum width of all path decomposition of G [RS83].

A k-bounded path-width tree G is a tree that is connected and that pw(G) ≤ k.

Notation. Let G1 and G2 be distinct graphs with at least one vertex, and let u ∈ G1, v ∈ G2.
Then the 1-sum G1 ⊕u,v G2 is the graph obtained by merging vertex u with vertex v. We refer to
this merged vertex as either u or v interchangeably.

Notation. Let G be a graph, T ⊆ E(G), and S ⊆ V (G). We define the following operations:

1. G \E T denotes the removal of all edges of T in G and then removing any isolated vertices.

2. G \V S denotes the induced subgraph of G given by vertex set V (G) \ S.

3 Technical Section

3.1 Caterpillar Reconfiguration

Definition 3.1. Let G = (V,E) be a graph where V = {v1, · · · , vn}. We define the k-spiked graph
of G as S where

V (S) = V ∪
n⋃

i=1

{si,j : 1 ≤ j ≤ k} and E(S) = E ∪
n⋃

i=1

{visi,j : 1 ≤ j ≤ k}.

This is the graph G with k new vertices and edges for each existing vertex. We call each visi,j a
spike of G.
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Figure 1: k-spiked graphs of K4

Lemma 3.2. Let S be the k-spiked graph of a graph G and let v be a particular vertex of G. Let P
be a path of length ≥ 2, and let p1, p2 be the endpoint vertices of P . Consider the graph P ⊕p2,v S
and let H be a subgraph of this graph.

Then if H is a caterpillar that contains all of P and uses at least one spike of each vertex in
G, then G contains a Hamiltonian path starting at v.

Proof. Note that as a caterpillar is a tree, and H uses at least one spike of each vertex in G, we
must have that H contains a spanning tree of G.

In H, considering following the path starting at p1 until the path diverges (some vertex has
degree ≥ 3), or until the path ends (some vertex has degree 1).

Suppose for a contradiction that the path diverges at a vertex t of degree ≥ 3. Note that the
earliest vertex of divergence is v. As the path has length ≥ 2, let w be the vertex encountered in
the path prior to t and note that w has degree ≥ 2. Let tu1, tu2 be two edges from the divergence
of the path. Then as each vertex of G uses at least one spike, in particular u1 and u2 each use a
spike and therefore have degree ≥ 2. Then this means that w, t, u1, u2 are all in the spine of H.
But the spine is a path, and t still has degree ≥ 3, a contradiction.

Therefore, we must have that the path ends. So part of H forming a spanning tree of G actually
forms a path using all the vertices of G, with the vertex v as one of it’s endpoints. So G contains
a Hamiltonian path starting at v.

Definition 3.3. Let G = (V,E) be a graph where V = {v1, · · · , vn}. Let v be a particular vertex
of G. We define the auxiliary graph G′

cater(v) as follows:

• Let P1 = p11 · · · p12n−1 be a path of length 2n− 1.

• Let P2 = p21 · · · p22n−1 be a path of length 2n− 1.

• Let Y be a claw (a star with 3 edges) with vertices {a, b, c, r}, where r is the center vertex,
and with an additional vertex d and edge cd.

• Let S be the 1-spiked graph of G.

Then G′
cater(v) is the graph formed by connecting S, P1, P2 by adding the edges p12n−1a, p

2
2n−1b,

and dv.
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Figure 2: G′
cater(v)

Theorem 3.4. The Caterpillar reconfiguration problem under the TJ rule is NP-hard.

Proof. Since the Hamiltonian v-path problem is NP-hard, to show that the Caterpillar re-
configuration problem is NP-hard, it suffices to give a polynomial-time reduction from the
Hamiltonian v-path problem.

Let (G, v) be an instance of theHamiltonian v-path problem. UsingG, we create the auxiliary
graph G′

cater(v) from 3.3. Let

Es = E(P1) ∪ E(Y ) ∪ {p12n−1a, dv} and Et = E(P2) ∪ E(Y ) ∪ {p22n−1b, dv.

r
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· · ·
p22n−1

v S r
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p11
· · ·
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· · ·
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v S

Figure 3: Es and Et in G′
cater(v)

Then we want to show that G has a Hamiltonian path starting at v if and only if the instance
(G′

cater(v), Es, Et) is reconfigurable.

(⇒) Suppose that G has a Hamiltonian path starting at v. Let this Hamiltonian path be e1 · · · en−1,
where e1 is the edge starting at v.

Note that the number of edges on this path is n−1, and that the number of spikes in G′
cater(v)

is n. Then one possible reconfiguration sequence from Es to Et in G′
cater(v) is:

(a) First, move (token jump) p11p
1
2 to e1, p

1
2p

1
3 to e2, · · · , and p1n−1p

1
n to en−1.

(b) Then, move p1np
1
n+1 to v1s1, p

1
n+1p

1
n+2 to v2s2, · · · , p12n−2p

1
2n−1 to vn−1sn−1, and p12n−1a

to vnsn.
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Each node in the reconfiguration sequence so far satisfies the property Π because at each
step, the removal of all the leaves in the subgraph formed by the tokens results in a path (we
first move the spine, and then convert spine edges to legs).

Then, we can symmetrically reverse the reconfiguration steps from steps (a) and (b) but for
the edges in P2 (i.e. use p2i instead of p1i ), which maintains the Π property and results in the
target solution.

Therefore, there exists a reconfiguration sequence from the source solution to the target
solution, so (G′

cater(v), Es, Et) is reconfigurable.

(⇐) Suppose that (G′
cater(v), Es, Et) is reconfigurable. This means that there exists a node in the

reconfiguration sequence in which a token is moved to p22n−1b, as this edge is part of the target
solution. Consider the placement of tokens at this node.

Note that until (at least) the edges p11p
1
2, · · · , p12n−2p

1
2n−1, and p12n−1a are moved, we cannot

move any token to p22n−1b, as otherwise the subgraph induced by the edges would not satisfy
Π.

This is a total of (2n− 2)︸ ︷︷ ︸
E(P1)

+ 1︸︷︷︸
p12n−1a

= 2n− 1 tokens that need to have been moved. The only

place for these tokens to move to are in S, as the subgraph at each step must be connected.

Also, note that a caterpillar does not have cycles, as a caterpillar is a tree. So the maximum
number of tokens that can be placed in S while maintaining Π is (n− 1)+n = 2n− 1, which
is when the tokens in G form a spanning tree of G (a spanning tree of a graph with n vertices
has size n− 1), and tokens are on all of the spikes of S (there are n spikes). This means that
the 2n− 1 tokens must have been all moved to S in the way described above.

Now, restrict our view of the subgraph formed by the tokens to just those in S along with
the edges cd, dv and call this H. As cdv is a path of length 2, S is the 1-spiked graph of G,
and H is a caterpillar, by Lemma 3.2, we have that G contains a Hamiltonian path starting
at v.

Now, let the size of G be N +M , where N = |V (G)| and M = |E(G)|. Then the size of G′
cater(v)

is linear to N + M since the size of P1, P2 is linear to N , Y is a constant, and the size of S is
linear to N +M . Also, the size of Es, Et is linear to N . Then producing (G′

cater(v), Es, Et) from
G takes O(N +M) time, which is polynomial w.r.t. the input size of G. So we have a polynomial-
time reduction from the Hamiltonian v-path problem to the Caterpillar reconfiguration
problem.

3.2 k-bounded Path-width Tree Reconfiguration

Definition 3.5. Let T be a tree and v be a vertex of T , where N(v) = {v1, · · · , vk}. Let
Bv1 , · · · , Bvk be the components of T \V {v}. We define Bvi to be a branch of v in T with root vi.

Definition 3.6. For k ≥ 0, the kth layer of a rooted tree, with root r, is the set of nodes that are
at distance k away from r.

Definition 3.7. Let k ≥ 0, l ≥ 1. We define a (k, l)-claw C as follows:

1. Let T be a complete ternary tree of depth k with root r and leaf nodes {v1, · · · , v3k}.
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2. For each leaf node vi, we define a new path Pvi = pvi1 · · · pvil of length l.

3. Then, C is the graph formed by T ⊕vi,p
vi
l
Pvi for all i ∈ [3k].

We say r is the root of C, T is the core of C, and each Pi a tail of C. Also, we call the branches of r in
C, say B1, B2, B3, the root branches of C, where each Bi contains path {P1+(i−1)·3k−1 , · · · , Pi·3k−1}.

Furthermore, let D(C) be a directed graph with the same vertex and edge set as C, with the
root r as a source flowing outward until a leaf node is reached. Let c, v ∈ V (C). We say c is a child
of v and v is an ancestor of c if c is reachable from v in D.

Example 3.8. A (1, 2)-claw is the usual definition of a claw (i.e. a star with 3 edges).

In order to prove our lemma about a claw’s structure, we need to introduce the following
structural theorem for path-width of trees.

Theorem 3.9 ([Sch90]). Let k ≥ 1 and T be a tree. pw(T ) ≥ k + 1 if and only if there is a vertex
v ∈ V (T ) such that there exists 3 branches, Ca, Cb, Cc, of v in T where pw(Ca) ≥ k, pw(Cb) ≥ k,
and pw(Cc) ≥ k.

Proposition 3.10. Let k ≥ 1, G a connected graph, and v a vertex of G. Then, a (k, l)-claw has
3k+1−1

2 + 3kl edges.

Proof. There are
∑k

i=1 3
i edges in the ternary tree and 3k paths with l edges, so we have

∑k
i=1 3

i+

3k|E(P )| = 3k+1−1
2 + 3kl edges in total, as desired.

Lemma 3.11. Let k ≥ 1. For any l ≥ 2, a (k, l)-claw T with root r, core C, and tails Pi for
i ∈ [3k] has the following properties:

1. pw(T ) = k + 1,

2. pw(T \E Pi) = k for all i ∈ [3k].

Moreover, we call each of T \E Pi an almost (k, l)-claw without tail i, for all i ∈ [3k].

Proof Sketch. For part 1, we first note that a (1, l)-claw has path-width 2. Let C1, C2, C3 be 3 copies
of the (1, l)-claw with root r1, r2, r3 respectively. Then, consider a normal claw G with central vertex
r and leaf vertices a, b, c. Let G̃ be constructed by the following operations: G⊕a,r1 C1, G⊕a,r2 C2,
G⊕a,r3 C3. Note that G̃ is exactly a (2, l)-claw. By Theorem 3.9, G has path-width 3 since removal
of any vertex v result in at most 1 branch with path-width 3, namely the branch containing an
ancestor of v. The result follows inductively.

For part 2, the proof is similar to part 1. Note that an almost (1, l)-claw without tail P1, P2,
or P3, all have path-width 1. Then, using the (1, l)-claw as a base case and Theorem 3.9, we can
show by induction on k that the branch of r in T containing Pi, say B1, satisfies pw(B1) = k − 2,
and the other two branches, say B2, B3, have path-width k − 1.

Lemma 3.12. Let k ≥ 1, l ≥ 2. Let C be a (k, l)-claw. Let Q = {P1, · · · , P3k} be the set
of tails for C. Let Ti be trees with ti ∈ V (Ti) where pw(Ti) ≥ 2 for i ∈ [3k]. Then, if G =
C ⊕p11,t1

T1 ⊕p21,t2
· · · ⊕

p3
k

1 ,t
3k

T3k , then pw(G) > k + 1.
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Proof. Let T1, T2, T3 be trees with pw(Ti) ≥ 2, for i ∈ [3]. Similar to before, consider joining
(1-sum) the three trees with a (1, l)-claw using its tail’s endpoints, and call this new graph G. Let
r be the root of the (1, l)-claw. Then, the resulting graph has path-width w where pw(Ti) + 1 ≤
p ≤ pw(Ti)+2, since a tail (excluding the root) joining the Ti for some i ∈ [3] will at most increase
pw(Ti) by 1 (or remain the same). So, we have 3 branches of r each with path-width at least
pw(Ti) + 1 ≥ 3. So, pw(G) ≥ 3. Iteratively building the claw from bottom-up, we have that
each subtree of C at mth layer of the core of C has k −m + 2. Since C is the subtree at layer 0,
pw(C) = k − 0 + 2 > k + 1 as desired.

Lemma 3.13. Let k ≥ 1, l ≥ 2. Let C be an almost (k, l)-claw without tail j. Without loss of
generality, assume j = 3k. Let C1, · · · , C3k−1 be caterpillar graphs and vi be an end of Ci for all
i ∈ [3k − 1]. Let G be a new graph. Then, if G = C ⊕p11,v1

C1 ⊕p21,v2
· · · ⊕

p3
k−1

1 ,v
3k−1

C3k−1, then

pw(G) = k.

Proof Sketch. The proof should be very similar to that of Lemma 3.12 and part 2 of Lemma 3.11.
Let T be an almost (1, l)-claw without tail 3. Let r be the root of T and P1, P2 be the tails of T .
Let C1, C2 be caterpillar graphs with v1, v2 some end of C1, C2. Consider a the graph G by taking
1-sum of the two caterpillars’ vertices v1, v2 with the (1, l)-claw tail endpoints p11, p

2
2. Note that the

graph P1 ⊕p11,v1
C1 has path-width 1, because the path P1 and the spine of C1 forms the new spine

for G, where each edges is at most on distance away from the spine. Similarly for P2 ⊕p21,v2
C2.

So, for each vertex v ∈ V (G), there are at most 2 branches of v where the path-width is 1. By
Theorem 3.9, pw(G) = 1. Then, using this G as a base case, and part 1 of Lemma 3.11, we can
show inductively that, for each v ∈ V (C), there are at most 2 branches of v with path-width k, so
pw(C) ≤ k. Since C contains a (k − 1, l)-claw as a subgraph, by Lemma 3.11, pw(C) = k.

Definition 3.14. Let G = (V,E) be a non-empty graph where V = {v1, · · · , vn}. Let v be a
particular vertex of G. We define the auxiliary graph G′

path(v) as follows:

• Let g(k, n) = 3k−1n3 and f(k, n) = 3k−1 · (n− 1 + n · g(k, n)) + 2. 1

• Let T be a (k, f(k, n))-claw with root r, core C, tails Pi for i ∈ [3k], root branches B1, B2, B3,
and Q1, Q2, Q3 be the tails contained within B1, B2, B3 respectively.

• For all 1 ≤ i ≤ 3k−1, define a new graph Gi to a copy of G, where vGi of Gi corresponds to v
of G. Then, let Si be a g(k, n)-spiked graph of Gi with vSi in Si corresponding to vGi of Gi.

Then, G′
path(v) is formed by performing T ⊕

p2·3
k−1+i

1 ,vSi

Si for i ∈ [3k−1].

1The parameters are made somewhat loose for improved readability.
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Figure 4: G′
path(v)

Theorem 3.15. Let k ≥ K for some large enough constant K. The k-bounded path-width
tree reconfiguration problem under the TJ rule is NP-hard.

Proof. To prove it is NP-hard, we show a polynomial-time reduction from the Hamiltonian v-
path problem to the k-bounded path-width tree reconfiguration problem. Let (G, v) be
an instance of the Hamiltonian v-path problem, where G is non-empty. Using G, we create the
auxiliary graph G′

path(v) from 3.14. Let T be the (k, f(k, n))-claw in G′
path(v) with root r, core

C, tails Pi for i ∈ [3k], root branches B1, B2, B3, and set of paths Q1, Q2, Q3 restricted to within
B1, B2, B3 respectively. Let Si be the spiked graphs in G′

path(v) for i ∈ [3k−1]. Let

Es = E(T ) \ E(P3k−1+1) and Et = E(T ) \ E(P1).

Then we want to show that (G′
path(v), Es, Et) is reconfigurable if and only if G has a Hamiltonian

path starting at v.

Claim 3.16. Let s ∈
⋃3k−1

i=1 V (Si). Let Mtotal be the total number of edges in all of Si except the

spikes at s, namely Mtotal = (
∑3k−1

i=1 |E(Si)|)− g(k, n). Then, Mtotal < f(k, n)− 2.
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Proof. Note that, since n ≥ 1,

(f(k, n)− 2)−M ≥ [3k−1 · (n− 1 + n · g(k, n))]− [3k−1 · (n · g(k, n) + |E(Kn)|)− g(k, n)]

= 3k−1(n− 1)− 3k−1n(n− 1)

2
+ g(k, n)

= 3k−1(n3 − (
n(n− 1)

2
− n+ 1)) > 0

So, we have f(k, n)− 2 > Mtotal as desired.

(⇐) Suppose that G has a Hamiltonian path starting at v, Let this Hamiltonian path be e1 · · · en−1,
where e1 is the edge starting at v. Then, for each 1 ≤ i ≤ 3k−1 Let ei1 · · · ein−1 denote the
Hamiltonian path of Gi in Si. Note that the number of edges on each Hamiltonian path is
n− 1. Also, note that the number of spikes for each Si, for i ∈ [3k−1], is n · g(k, n) = n · 3kn3

and that each of the tail Pi, for i ∈ [3k], has f(k, n)− 1 = 3k−1 · (n+ n · g(k, n)) + 1 edges.

Then, one possible reconfiguration sequence from Es to Et in G′
path(v) is:

(a) Let i = 1. For i ≤ 3k−1, we want to move (n+ n · g(k, n)) tokens to each Si.

(i) Let a = i · (n+ n · g(k, n)).
(ii) First, we move the token p1a+1p

1
a+2 to e2·3

k−1+i
1 , · · · , p1a+n−1p

1
a+n to e2·3

k−1+i
n−1 .

(iii) Then, we move each of p1a+np
1
a+(n+1), · · · , p

1
a+(n+n·g(k,n)−1)p

1
a+(n+n·g(k,n)) to each of

the spikes in Si sequentially.

(b) We move the token from p1f(k,n)−1p
1
f(k,n) to p3

k−1+1
f(k,n)−1p

3k−1+1
f(k,n) .

(c) Finally, we symmetrically move all the tokens that we moved to each Si in previous steps
back to the tail P3k−1+1.

We claim that each step of reconfiguration sequence induces a graph that satisfies the
property k-bounded path-width tree. It suffices to consider token jumps performed
in step a of our reconfiguration sequence, since the remaining steps are symmetric in the
sense that the graph induced is isomorphic to a graph induced by a previous reconfigu-
ration step. Note that Es induces a path-width k graph by part 2 of Lemma 3.11, since
it is an almost (k, l)-claw.

Now, consider the jth token jump in step a for some 1 ≤ j ≤ 3k−1 · (n + n · g(k, n)), it
induces a graph Cj what contains an almost (k, f(k, n)− j)-claw Tj without tail P3k as
a subgraph. Furthermore, each tail Pi of Tj is augmented with a caterpillar graph Gi

for i ∈ [3k − 1], where each tail Pi is connected an end of Gi. From our reconfiguration
sequence, it is clear each Cj maintains the tree property since Cj is just the 1-sum of
a (k, f(k, n) − j)-claw and caterpillar graphs, which are both trees. Furthermore, note
that f(k, n) − j ≥ 1, since we only at most f(k, n) − 2 edges away in step a. Then,
by Lemma 3.13, pw(Cj) = k, so each subgraph induced in our reconfiguration sequence
has path-width ≤ k. Therefore, there exists a reconfiguration sequence from the source
solution to the target solution, so (G′

path(v), Es, Et) is reconfigurable.

(⇒) Suppose that (G′
path(v), Es, Et) is reconfigurable. Then, there exist a step during the

reconfiguration in which a token is placed on the edge p′ = p3
k−1+1

f(k,n) p3
k−1+1

f(k,n)−1. Note that
each subgraph induced in our reconfiguration sequence has to be connected since the
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property of concern is a k-bounded path-width tree. Also, if tokens are placed on all
edges of C and the first edge of each tail Pi (i.e. pif(k,n)−1p

i
f(k,n) for i ∈ [3k]), then, by

part 1 of Lemma 3.11, the graph induced by the edges has path-width ≥ k + 1 since it
contains a subgraph isomorphic to a (k, 2)-claw.

So, if a token is placed on p′ on step t, there exists at least one tail Pi for some i ∈
[3k]\{3k−1+1} such that no tokens are placed on any of its edges. This implies, at step
t− 1, right before moving the token to p′, at least f(k, n)− 2 tokens on Pi have already
been moved to some other edges on G′

path(v).

Without loss of generality, let the tail Pi described above, where there are no tokens
placed on it at time t, to be the tail P1. Due to the connectedness of tree, we cannot

move any tokens to edges of P3k−1+1 \E {p3k−1+1
f(k,n)−1p

3k−1+1
f(k,n) } before first moving a token to

p′. So, the only place for the tokens to move to are the edges on each of the g(k, n)-spiked
graph, namely Si for i ∈ [3k−1]. Since we have moved away at least f(k, n) − 2 tokens
of P1 away at step t, by claim 3.16, there is at least a token on some spike at s for every

vertex s ∈
⋃3k−1

i=1 V (Si).

We make another observation. Let U be the subgraph induced by the tokens at step
t. Similarly, for i ∈ [3k−1], let Ri denote the subgraph induced but constrained to
the g(k, n)-spiked graph Si and the tail P2·3k−1+i. Note that U and all of the Ri’s are
connected subgraphs, and in particular, connected subtrees of G′

path(v). Moreover, note
that each Si is connected to a leaf vertex in the root branch B3, say with root v3.

By a counting argument, U has to contain the edge rv3, since a token can only be
moved away from rv3 when there are no tokens placed any of the edges of the root
branches B1, B2. But at any point in the reconfiguration, there are at most f(k, n) +
(f(k, n) + g(k, n)) ≤ 3f(k, n) slots to move to. For a large enough K with k ≥ K,
|E(B1)| + |E(B3)| > 3f(k, n), since B1 contains 3k paths of length f(k, n), namely the
tails corresponding to B1. So, K = 2 suffices. Since there is a token edge rv3 and there
are tokens on each Si, there are tokens on all of the edges in B2. So, U contains B2 as
a subgraph.

Now, suppose, for a contradiction, that pw(Ri) ≥ 2 for all i ∈ [3k−1]. Then, by Lemma
3.12, we can show that pw(U) > k, since U contains a (k−1, 2)-claw subgraph where for
i ∈ [3k−1] each tail Pi are 1-summed with Ri (which are of trees with path-width ≥ 2).
This is a contradiction since step t is part of the reconfiguration sequence. So, there
exists some i ∈ [3k−1] where Ri is a path-width 1 tree (i.e. a caterpillar), and without
loss of generality, we assume Ri = R1.

Note that R1 is a subgraph of the 1-sum of path P1 and a g(k, n)-spiked graph. Also,
by above observation, there is at least a token on some spike at s for every vertex

s ∈
⋃3k−1

i=1 V (S1), so by connectedness of R1, the R1 has to contain a spanning tree of
G1 in S1, and contain at least one spike for each vertex of G1. So, by Lemma 3.2, there
is a Hamiltonian vS1 = vG1 path on G1. Since G1 is just a copy of G and vG1 = v, there
is a Hamiltonian v-path for G as desired.

Now, let the size of G be N+M , where N = |V (G)| and M = |E(G)|. Since M < N2, it suffices
to show that our input (G′

path(v), Es, Et) has size polynomial to N . By the construction of G′
path(v),

it contains a (k, f(k, n))-claw subgraph and 3k−1 g(k,N)-spiked graphs of G. By proposition 3.10,
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the (k, f(k, n))-claw subgraph has 3k+1−1
2 +3k ·f(k,N) edges, thus 3k+1−1

2 +3k ·f(k,N)+1 vertices.
The spiked graphs have 3k−1 · (N · g(k,N) + N) vertices in total. Recall g(k,N) = 3k−1N3 and
f(k,N) = 3k−1 · (N − 1 +N · g(k,N)) + 2. Then,

|V (G′
path(v))| =

3k+1 − 1

2
+ 3k · f(k,N) + 1 + 3k−1 · (N · g(k,N) +N)

=
3k+1 − 1

2
+ 3k · (3k−1 · (N − 1 +N · 3k−1N3) + 2) + 1 + 3k−1 · (N · 3k−1N3 +N)

≤ 3k+1 + 32kN + 33kN4 + 3k+1 + 2 · 3k + 1 + 32kN4 + 3kN

≤ 33kN4 ≤ 33k+2N4.

Since k is a constant (k is fixed), the size of G′
path(v) = |V (G′

path(v))|+ |E(G′
path(v))| ≤ 33k+2N4 +

(33k+2N4)2, which is polynomial in N . Also, note that the size of Es, Et is bounded above by
|E(G′

path(v))| < |V (G′
path(v))|2 ≤ 36k+4N8, so they are also polynomial in N . So, producing our

input takes O(poly(N + M)) time, which is polynomial w.r.t. the input size of G. So we have a
polynomial-time reduction as desired.

4 Conclusion and Open Problems

In this paper, we have proved that the Caterpillar reconfiguration problem is NP-hard under
the TJ rule, and attempted to prove this for the k-bounded path-width tree reconfiguration
as well. Some open problems are the complexities for our two studied properties but under the TS
rule. Results for trees and paths under the TS rule are also still unknown. Understanding their
behavior would likely provide insights into how the bounded path-width and bounded tree-width
versions behave under the TS rule. While we suspect k-bounded path-width reconfiguration
is in NP, we are not aware of any formal proof of this result.
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