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Abstract

In this report, we will study the recent proof by Dujmovic et al. [Duj+19a] showing that
planar graphs have bounded queue number. In particular, we will mainly be covering page 1 to
18 of reference [Duj+19b] in this report.

1 Introduction

Stacks and queues are ubiquitous in algorithm design, so it is natural to define a similar data
structure for graphs, namely the stack and queue layout in Section 2. The stack and queue layout
corresponds to DFS and BFS respectively, and the stack and queue-number provides a way of
quantifying the power of stack and queue in graphs. (See Example 2.7 for details)

However, even for a simple graph class like planar graph, it was unknown to us whether the
queue-number and stack-number are bounded. Heath, Leighton, and Rosenberg first conjectured
that the queue-number is bounded in 1992 [HLR92]. This remained unproven for 27 years, until
recently in 2019. Dujmovic et al. finally had a breakthrough and showed that the queue-number of
all planar graphs have a constant upper bound of 49 [Duj+19a]. The tools developed to prove this
result have led to the resolution of a few other open problems of related nature, such as bounded
non-repetitive chromatic number in planar graphs [Duj+20]. However, the problem of whether we
can bound the queue-number bt the stack-number, or vice versa, is still unsolved. In other words,
we still don’t know whether a queue or stack is more powerful in graphs.

In this lecture note, we will cover the following:

1. Provide the necessary definitions for the proof, accompanied by illustrative examples.

2. Introduce a new technique called layered partition, and prove some useful results on the
relation between layered partition and queue-number.

3. Prove that planar graphs have bounded queue-number of 766.

4. Briefly explore the proof for reducing the upper bound to 49, by exploiting some structures
called Tripod (see Definition 4.10) in a planar triangulation.

The result of bounded queue-number can be generalized to genus g graphs and proper minor-
closed class of graphs, but the details will not be provided here; interested readers should go read
the paper by Dujmovic et al [Duj+19b].
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2 Preliminaries

Definition 2.1 (Nested Edge). Let G be a graph and (≺) a vertex ordering of G. Let uv, xy be
two edges of G and, without loss of generality, u ≺ v and x ≺ y. Then, uv, xy are said to be nested
if u ≺ x ≺ y ≺ v.

Example 2.2. Example of nested edges in a graph.

Definition 2.3 (Queue Layout). A queue layout of G with vertex ordering (≺) is a partition of
the edges, say E1, · · · , Ek ⊆ E(G), such that for every pair of edges e, f ∈ Ei, no two edges nest.
Each of the edge partition in a queue layout is called a queue.

Definition 2.4 (k-queue Layout and Queue Number). G is said to have a k-queue layout if there
is a valid queue layout using only k edge partitions. The queue-number of G, denoted qn(G), is
the smallest k such that G has a k-queue layout.

Example 2.5. For trees, we have a 1-queue layout simply following BFS traversal ordering.
For a less trivial example, we consider the queue layout for a 3 × 3 grid graph, where the edge

partitions are E1 and E2. This uses 2 partitions, so G with this vertex ordering admits a 2-queue
layout.
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However, when given a different vertex ordering, G can admit a 1-queue layout! So, the queue-
number of G is qn(G) = 1.

Note 2.6. There is a similar definition with stack, where the restriction on edges is that every pair
within the same edge partition cannot ”cross” (cannot satisfy u < x < v < y), and this structure
corresponds to DFS in a similar fashion of how queue layout corresponds to BFS in Example 2.7.

Example 2.7. The following example shows how a queue layout corresponds to BFS, and in partic-
ular, why a queue layout could not have nested edges. Assume the following graph admits a 1-queue
layout using the vertex ordering abcde shown below.

In the BFS, we want to traverse all the edges by the vertex ordering. In particular, the root of
the BFS traversal is the first vertex in the ordering. Let v be some vertex in the ordering, and let
a1, a2, · · · , ak be the neighbors of v to the left of v in the vertex ordering, with a1 < a2 < · · · < ak.
Similarly, let b1, · · · , bj be neighbors to the right of v and b1 < b2 < · · · < bj. Then, when we
reach vertex v, we first remove a1v, · · · , akv from the queue and push vb1, · · · , vbm to the queue.
However, the example above shows that if there is a pair of nested edges, then the queue structure
will be invalid.

Definition 2.8 (Layered Partition). A layered partition of G is an ordered vertex partition (V0, V1, · · · , Vn)
such that if xy ∈ E(G), then one of them holds:

• x, y ∈ Vi for some i. This is called an intra-layer edge.
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• x ∈ Vi and y ∈ Vi+1 for some i. This is called an inter-layer edge.

Definition 2.9 (BFS Layering). Let r be a root in a connected graph G. A BFS layering is a
layering where each partition Vi = {v : dist(r, v) = i, v ∈ V (G)}. More intuitively, we can consider
a BFS layering of G in terms of a BFS spanning tree T , where each layer i of the tree T serves as
the partition Vi.

Example 2.10. An example of a (BFS) layering for the following graph.

Note that {ab, ac, ce} and {bc, cd, ef} are examples of inter-layer and intra-layer edges, respectively.

Definition 2.11 (H-partition). A H-partition of G is a partition parameterized by the graph H,
namely (Ax : x ∈ V (H)), where each Ax is a partition. For every edge uv ∈ E(G), if u and v
belong to partitions Ax and Ay respectively, then one of them holds:

• x = y (u, v are in the same partition). In this case, uv is called an intra-bag edge.

• xy ∈ E(H). In this case, uv is called an inter-bag edge.

The width of the H-partition is max |Ax| : x ∈ V (H).

Note 2.12. A special case of H-partition is where H is a tree T , known as a tree-partition. This
is unlike tree-decomposition in the sense that our bags are partition, and thus, the intersection of
our bags is always empty here.

Example 2.13. Given the following graph G, we have two examples of H decompositions, where
in the second one, H is a tree, so it is a tree partition.
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For the C3-decomposition below (since H = C3), {ac, ad, bc, bd} are examples of some inter-bag
edges, and {ab, cd, ef} are examples of intra-bag edges.

Errata: ”This is a tree partition, since H is a tree.”

Definition 2.14 (Layered Width of a Partition). Given a layering (V0, · · · , Vk) and a partition
P = (P1, · · · , Pm) of G, the layered width of P is l if each partition in P has at most l vertices in
each layer Vi. In other words, P has layered width l if and only if Pi ∩ Vj ≤ l for all 1 ≤ i ≤ m and
1 ≤ k ≤ j.
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Example 2.15. Given the same graph in Example 2.10, and the same layering, we show that it
has layered width 2.

Definition 2.16 (Quotient). Given a partition P of G, the quotient of P , denoted G/P , is a graph
where each part in Pi is represented by a vertex pi and pipj ∈ E(G/P ) if and only if there are edges
in E(G) connecting some vertices between partition Pi and Pj .

Example 2.17. Given a partition P of G (same graph as Example 2.10), we show an example of
G/P .

Remark 2.18 (Some notes on the properties of quotient).

• The structure we retain in the quotient is the adjacency structure between different partitions.

• If each of the partition is connected, the quotient of P is equivalent to the resulting graph by
contracting each partition Pi into pi, which means G/P is a minor of G. (See Example 2.17)
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• Another way to define an H-partition P is that G has an H-partition if G/P is isomorphic
to a spanning subgraph of H.

• Given a partition P = (P1, · · · , Pn), G has a G/P -partition, where each x ∈ V (G/P ) corre-
sponds a distinct part Pi of the partition.

3 Relating Queues and Layered Partition

In this section, we will introduce two more definitions, then show a main result relating the queue-
number of H and G, where the H-partition of G has layered width l with respect to some layering.

Definition 3.1 (Rainbow). Given a vertex ordering of G, a rainbow of G with respect to the
ordering is a set of pairwise nested edges.

Note 3.2. Recall that nested edges requires that endpoints of edges are all distinct, thus, all of such
edges in a rainbow must form a matching.

Example 3.3. Examples of 2 different rainbows in the graph G.

Note that they are rainbows because edges within those sets are pairwise nested. On a related note,
the second rainbow {v1v6, v2v5, v3v4} does look like a rainbow, with all the arcs nested within each
other.

Definition 3.4 (l-blowup). Let H be a graph with vertices v1, · · · , vn. Define G as follows:

• V (G): The vertex set are B1, B2, · · · , Bn where each Bi contains at most l vertices, and all
vertices between the Bi’s are pairwise distinct.

• E(G): For each edge vivj in H, we have an edge between every vertex in Bi and Bj . We can
think of it as a complete bipartite graph with vertex class Bi and Bj .

G is called the l-blowup of H, and each Bi is called a block of G.

Example 3.5. Example of an l-blowup of H, with l = 3.
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Each of the groups circled by a dashed line is a block. Each of these blocks Bi corresponds to
vi ∈ V (H) and has size ≤ 3, since G is a 3-blowup of H.

Before we prove our main lemma (Lemma 3.12) and its immediate result (Corollary 3.13), we
need to first introduce the following three lemmas, without proof.

Lemma 3.6 (Heath and Rosenberg). A vertex ordering in G admits a k-queue layout if and only
if every rainbow with respect to the ordering has size at most k. [HR92]

Lemma 3.7 (Heath and Rosenberg). A complete graph of n vertices, Kn, has queue-number ⌊n2 ⌋.
[HR92]

Note 3.8. The proofs of the lemmas above utilize extra lemmas and theorems that are an integral
part of the paper’s contribution. It will be too long if included in this lecture note. For the second
lemma, the main line of attack is to show qn(G) ≤ ⌊n2 ⌋ (the easy direction), and then invoke a
central lemma to that paper, and show qn(G) ≥ ⌊n2 ⌋ (the hard direction).

Lemma 3.9 (Wiechert). Let G be a graph with treewidth k. Then, qn(G) ≤ 2k − 1. [Wie17]

Note 3.10. The crux of the proof involves a colouring argument.
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Figure 1: Explaining the intra-level intra-bag case

This lemma by Wiechert (Lemma 3.9) is important because if we are able to bound the treewidth
of some graphs related to the planar graph by some constant, we can then hope to apply the bound
and see if it can provide some constant upper bound for the planar graph. The following lemma is
necessary for our proof of Lemma 3.12.

Lemma 3.11. Let H be a graph with a 1-queue layout and G be an l-blowup of H. Then, G has
an l-queue layout.

Proof. Let v1, · · · , vn be the ordering that admits a 1-queue layout in H, and B1, · · · , Bn (the
ordering within Bi can be arbitrary) be the vertex ordering of G. Let R be a rainbow of G. By
Lemma 3.6, it is sufficient to show that |R| ≤ l. The main idea is to show that all the left (or right)
endpoints of the rainbow must lie in the same block in G. Suppose, for a contradiction, that all left
and right endpoints lie in at least 2 different blocks respectively. For simplicity, say they are in a
total of 4 different blocks, where B1, B2 are for left endpoints, and B3, B4 are for right endpoints.
Then there must exist some edges connecting B1, B4, and another connecting B2, B3. This implies
that there is an edge v1v4 and v2v3 in H, which is a contradiction, since they are nested. Thus, all
left (or right) endpoints must lie in a single block. Recall that edges in a rainbow must nest and
nesting edges must have distinct endpoints. Since each block has at most l vertices, the rainbow
size |R| ≤ l as required.

Lemma 3.12. If G has an H-partition with layered width l with respect to some layering (V0, V1, · · · , Vn),
and H has a k-queue layout, then G has a (3lk + ⌊32 l⌋)-queue layout. Thus,

qn(G) ≤ 3l qn(H) + ⌊3

2
l⌋

Proof. Let x1, · · · , xh be the vertex ordering of H that admits a k-queue layout, with queues
E1, · · · , Ek. For each layer Vi, we define V ′

i as Ax1 ∩ Vi, Ax2 ∩ Vi, · · · , Axh
∩ Vi, where the ordering

within each Ax ∩ Vi is arbitrary. Then, let V ′
1 , · · · , V ′

n be the vertex ordering of G. We will show
that G admits the desired queue layout with this vertex ordering. In particular, we have 4 cases
to consider, but we will only consider the following 2 cases because the remaining 2 cases follow a
similar argument.
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• (Intra-level intra-bag edges) Consider the subgraph G′ induced by Ax∩Vi for some x ∈ V (H)
and 0 ≤ i ≤ n. Note that |Ax ∩ Vi| ≤ l since it has layered width l, so G′ is a subgraph of
an l-complete graph. (See Figure 1) Thus, by Lemma 3.7, qn(G′) ≤ qn(Kl) = ⌊ l

2⌋. These
subgraphs are located in different layers or in different bags, and since each of the bags and
layers are located sequentially in the ordering, namely V ′

1 , · · · , V ′
n, the edges between the

subgraphs cannot nest. Thus, ⌊ l
2⌋ queues suffice.

• (Inter-level inter-bag edges) We want to consider all edges going from Ax at Vi to Ay at Vi+1.
Let the subgraph consisting of all these edges be G′. Fix a queue, Eα, consider 2 subgraphs
G1 and G2 with inter-level inter-bag edges restricted within Eα. Let G1 be defined as all
inter-level inter-bag edges xy ∈ Eα where x ∈ Vi, y ∈ Vi+1 and x ≺ y; and similarly, let G2

be defined by y ≺ x.

Consider the following auxiliary graph Z1 (See Figure 2). The main idea here is that each
zi,x here represents vertices in Ax in layer Vi. Let Z1 have the following vertex ordering from
top left to bottom right, and the inferred vertex set

z0,x1 , · · · z0,xh

z1,x1 , · · · z1,xh

...

zn,x1 , · · · zn,xh

For the edges of Z1, there is an edge from zi,xj to zi+1,xk
if and only if xjxk ∈ Eα with

xj ≺ xk. Note that no two edges here nest. The only case it could have nested is if we have
edges z0,xiz1,xj and z0,xk

z1,xl
, where i ≺ k ≺ l ≺ j. However, this would mean the edges xixj

and xkxl by construction of Z1. So Z1 admits a 1-queue layout.

Consider a maximum l-blowup of Z1 (by replacing each vertex z0,x1 by blocks of l vertices),
say Z ′

1. It is clear that G1 is isomorphic to the subgraph of Z ′
1, where each blocks of Z ′

1

corresponds to partition bags Ax of G1 in some layer Vi. Then, by Lemma 3.11, Z ′
1 admits

an l-queue layout, and since G1 is a subgraph of it, G1 also admits an l-queue layout. We
can construct Z2, Z

′
2 similarly for G2 for it to have an l-queue layout.

Note that how G1 and G2 are parameterized by the edges in Eα. So, for different queues, say
Eβ, the G1 and G2 will be edge disjoint from the ones for Eα. Thus, the union of all these
G1 G2 for each queue gives us all the inter-level inter-bag edges, and that each of these G1

and G2 serve as a queue. So, G′ has a 2kl-queue layout, since G1, G2 have an l-queue layout
and each of them are parameterized by the k queues of H.

For the remaining two cases, intra-level inter-bag edges admit a kl-queue layout, and inter-level
intra-bag edges admit a l-queue layout. Combining them all together,

⌊ l
2
⌋ + kl + l + 2kl = 3kl + ⌊3

2
l⌋ = 3l qn(H) + ⌊3

2
l⌋

we have the desired (3l qn(H) + ⌊32 l⌋)-queue layout for G.

The following immediate result is central to both the main proofs for bounded queue-number
in planar graphs and also for reducing the upper bound.
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Figure 2: Explaining the inter-level inter-bag case
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Corollary 3.13. Let P be a partition of G with layered width l such that G/P has treewidth at
most k, then qn(G) ≤ 3l(2k − 1) + ⌊32 l⌋.

Proof. Recall that G has a G/P -partition (Remark 2.18). By assumption, G/P has treewidth at
most k, so by Lemma 3.9, qn(G/P ) ≤ 2k − 1. Combining this with Lemma 3.12, where H = G/P ,
we have

qn(G) ≤ 3l qn(G/P ) + ⌊3

2
l⌋ ≤ 3l(2k − 1) + ⌊3

2
l⌋

as desired.

4 Main Result

4.1 Proof of Bounded Queue-number

Of important note here is that if H is a spanning subgraph of G, it must satisfy qn(H) ≤ qn(G),
because for H, we can achieve qn(G) by simply copying the queues used in G and removing the
edges not in H. This idea works for general subgraphs as well, but we will also have to remove ver-
tices. Thus, a very natural way to approach this conjecture, showing planar graphs have bounded
queue-number, is to think of what structures in a triangulated graph of n vertices we can exploit,
such that we can get a constant bound for any planar graphs of n vertices. This leads to the core
of our main lemma, where we show that any triangulated disc has a partition P such that the
quotient has a constant treewidth and layered width. Then, we can apply Corollary 3.13 above, to
get the desired queue-number bound for planar graphs.

Before we can prove the main lemma described above (shown later as Lemma 4.7), we need to
introduce the idea of vertical paths and a famous result related to vertex coloring.

Definition 4.1 (Vertical Path). Let T be a spanning tree of G rooted at r. A vertical path P of
T is a path (v1, · · · , vk), where distT (vi, r) = d+ i for some d ≥ 0. The vertex v1 is called an upper
endpoint and vk is called a lower endpoint.

Note 4.2. A vertical path is a less restrictive definition than that of a geodesic, a shortest path
between 2 endpoints, because it does not enforce the shortest condition within the graph; the vertical
path just has to be a ”downward” path in T from a high to low layer, with respect to the root r.
Philipczuk and Sibertz showed a weaker version of our main lemma, where they showed G has a
partition P of geodesics instead of vertical paths. [PS19]

Example 4.3. Examples of a geodesic and a vertical path.
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A vertical path is vertical in the sense that from the upper endpoint to the lower endpoint, it keeps
getting farther away from the root with respect to T .

Lemma 4.4 (Sperner’s Lemma - A 2D variant). Given a set of colors {1, 2, 3}. Let G be a
triangulated disc, where the outer-face is bounded by the cycle induced by P1, P2, P3, where each Pi

admits color i. Then, there must exist an inner face of G where it uses all 3 colors in its vertices.

Note 4.5. It is not too tricky to prove this, but the proof I know of, for a close variant of Sperner’s
lemma, utilizes results in game theory, which is not in the spirit of this lecture note.

Example 4.6. Example of Sperner’s Lemma with the Sperner’s coloring and the inner face that
utilizes all 3 colors.
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The next lemma is central to the proof of bounded queue-number for planar graphs.

Lemma 4.7. Let G+ be a triangulation and T be a spanning tree of G+ rooted at r, where r is on
the outerface of G+. Let P1, · · · , Pk be vertical paths of T , with k ∈ {1, · · · , 6}, such that P1 · · ·Pk

forms a cycle C in G+.
Let G be the triangulated disc induced by vertices of C and in the interior of C. Then, G has

a partition P of vertical paths with {P1 · · ·Pk} ⊆ P, and that G/P has treewidth at most 8 where
there exists some bag in G/P containing all the vertices corresponding to P1 · · ·Pk.

Notation. Let P be a path. We use pi for the ith vertex on the path. Specifically, we denote ps

as the first vertex and pl as the last vertex.

Proof. The main idea is to do induction on the number of vertices in a triangulated disc, exploit
some structures in its subgraphs (also triangulated disc), and partition G into vertical paths with
respect to some spanning tree T . The inductive proof consists of 3 main parts:

1. Reduce from a triangulated disc of n vertices to a few smaller triangulated disc subgraphs,
on which we apply the inductive hypothesis, through Sperner’s Lemma. From this, we create
the desired partition of G.

2. Construct a tree decomposition from the subtree decompositions by induction.

3. Verify that this decomposition is indeed a valid tree decomposition.

We will only explore steps 1 and 2, as the verification step is relatively algorithmic and does not
provide much new insight.

We will prove by induction on |V (G)|. Our base case is |V (G)| = 3, which is simple. Note that
a single vertex of G is a vertical path (a singleton path) in T . Let P be distinct vertices of G, then
G/P has a tree decomposition of just a bag with all 3 vertices, so tw(G/P) ≤ 8. Now, let’s assume
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|V (G)| > 3.

Step 1: Assume a clockwise orientation on the cycle, such that traveling in the clockwise direction
on P1 · · ·Pk gives us the cycle C. We want to define 3 paths R1, R2, R3 that forms the cycle
boundary. In particular,

• If k = 1, and assume P1 = ps1P
′
1p

l
1, we define R1 = ps1, R2 = p′1, R3 = pl1.

• If k = 2, and assume 1 = ps1P
′
1, we define R1 = ps1, R2 = P ′

1, R3 = P2.

• If k ∈ {3, 4, 5, 6}, we define Ri = Pi · · ·P⌊ik/3⌋.

Essentially, we combine Pi if we have too many (≥ 3) and split Pi if there is not enough. Let G
admit a Sperner’s coloring by coloring vertices on Ri with color i. Then, we will color the other
vertices in G as follows. (See Figure 3)

• Observe that r lies on or in the exterior of C. For any vertex v in the interior of C, namely
v ∈ D that is not on C, we have a path, say P , from r to v that is in T since T is spanning.

• Since P connects r to v, it must use a vertex of C somewhere, say c, because r is on or outside
of C and v is in the interior of C. Then, we color v with color i where some vertex of Ri is
the first vertex P intersects.

Then, by Sperner’s lemma (Lemma 4.4), some inner face ∆ = {t1, t2, t3} must use all 3 colors in
its vertices. We assume WLOG that ti admits color i.

Let Qi be the path in the tree T from ti to Ri, and let pi be the vertex at which it touches Ri.
This is possible because from the coloring, we know that ti is colored i only if it crosses Ri when
traveling from the root. Let Q′

i be the truncated path of Qi, removing the vertex pi. WLOG, we
assume a clockwise orientation on the cycle. Let R+

i be the subpath in Ri that comes before pi,
since pi touches Ri, and R−

i be the path that comes after. Then, consider Ci = R+
i Q

′
iQ

′
i+1R

−
i+1 for

all i ∈ {1, 2, 3} (with R4 = R1). The Ci’s that are not cycles are called ”degenerate”, and we won’t
consider them. In particular, they happen when Qi+1,

′Q′
i are empty and R−

i+1, R
+
i are both single

vertices.
For each cycle Ci (i ∈ {1, 2, 3} assuming no ”degenerate” cycles), define its induced subgraph

as Di. Note that each Di is a triangulated disc and uses at most n− 1 vertices because Ci captures
only 2 of the 3 vertices on ∆. (See Figure 4) Recall that Ci = R+

i Q
′
iQ

′
i+1R

−
i+1, and by construction,

each Ri is joined by at most 2 vertical paths (i.e. the case when k > 3). Thus, the cycle Ci can
be re-represented with at most 6 vertical paths, by replacing Ri and Ri+1 with the respective Pi’s.
This means, Di is a triangulated disc bounded by a cycle generated from 6 vertical paths of T .
Thus, we can apply the inductive hypothesis on Di. Di has a partition PDi of vertical paths such
that Di/PDi has a tree decomposition of bag size at most 9, where we denote the underlying tree
Ji. Also, Di/PDi has a bag that contains all the vertical paths that forms the boundary of Di,
which we will call boundary paths. Denote these bags as (Bi

x : x ∈ V (Ji)). Let the bag Bi
ui

be the
one that contains all of those (at most) 6 boundary paths. We perform this for all non degenerate
Ci.

For all Di’s that we have generated, we will use them to define the desired partition P for G.
First, we initialize P with all the initial vertical paths P1, · · · , Pk that defines P. Then, we add all
the Q′

i to P. Note that for each of the Di, by our inductive hypothesis, the outer boundary of Di
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Figure 3: Example of the triangulated disc and its Sperner’s coloring
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Figure 4: Example of forming the smaller triangulated discs for induction
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is generated by 6 vertical paths. Thus, the partition PDi can be considered as 2 separate classes:
the boundary paths defining Di, and the paths that are strictly contained within Ci, which we call
internal paths. Then, for all internal paths of Di, we simply add it to P. This is valid partition for
G because the internal paths do not share any vertices with P1, · · · , Pk, Q

′
1, Q

′
2, Q

′
3. So, all paths

in P are indeed vertical paths of T .

Step 2: Now, we construct the tree-decomposition for G/P. Recall that Di/PDi has a Ji-
decomposition, and that Bi

ui
contains all the vertical paths of Di. For simplicity sake, say we

have J1, J2, J3, implying that all Di are valid, and suppose, WLOG, that all Ji are disjoint. We
construct the tree J as follows, which will serve as the desired J-decomposition for G/P . (See
Figure 5)

• V (J) = {u} ∪ (
⋃

i={1,2,3} V (Ji))

• E(J) = {uu1, uu2, uu3} ∪ (
⋃

i={1,2,3}E(Ji))

. For each vertex of J , we initialize the bag Bx as follows

• For x ̸= u and x ∈ Ji, Bx = Bi
x.

• For x = u, Bx consists of all vertices corresponding to P1, · · · , Pk and Q′
1, Q

′
2, Q

′
3.

However, it is not yet a valid tree decomposition because some vertices in Bi
x are not actually

vertices of G/P. Recall that Bi
x contains vertices corresponding to vertical path partitions of Di.

From step 1, we reasoned that the partition Di is separated into 2 classes: boundary paths and
internal paths. For internal paths, we know that they are actually in the partition P, by construc-
tion, but things are trickier for boundary paths. For each boundary paths of Di, each of them is
a either a sub-path of Pi for some i ∈ {1, · · · , k} or of Q′

j for some j ∈ {1, 2, 3}. This is because,
by construction, the boundary paths of Di are either Q′

i, Q
′
i+1 or two sub-paths of P1, · · · , Pk from

splitting Ri. Now, for each vertex in Bx that are boundary paths of Di, we replace it with the
corresponding vertex in G/P that denotes the corresponding vertical paths Q′

1, Q
′
2, Q

′
3, P1, · · · , Pk.

Since we are just replacing 1 vertex with another, not introducing any new vertices into any bag,
the maximum bag size of the whole J-decomposition is still 9. Thus, the treewidth is at most 8.

Step 3: We have to check that it is indeed a tree decomposition. Main point to note here is that
when it concerns the vertices that correspond to those replaced paths (i.e. the boundary paths of
Di), the bag Bu serves as a bridge between different subtrees (the Ji). Then, by induction, the
bags that contain those vertices are connected as a subtree within Ji. The remaining details can
be found in reference [Duj+19b].

The lemma (Lemma 4.7) we proved above is a stronger statement than we need for proving
bounded queue-number. Below, we will provide the main idea on how to apply a special case of it
to prove this theorem.

Theorem 4.8. Let G be planar. Then G has an H-partition of layered width 1, where H has
treewidth at most 8.

Proof. Let G+ be the planar triangulation of G. Let T be a BFS spanning tree rooted at one of
the vertices on the outerface. Define the layering to be the BFS layering with respect to T . So, by
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Figure 5: Example of the structure of tree J
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Lemma 4.7, it has a partition P of paths vertical in T where G+/P has treewidth at most 8, and
since G/P is a subgraph of G+/P , the treewidth of G/P ≤ 8. Let Pv be any path in P . Each step
in Pv goes down a layer from Vi to Vi+1, so |Pv ∩ Vi| ≤ 1 for all layers Vi, and so, P has layered
width 1. Let H be G/P where each vertex of H corresponds to a bag of vertical paths in P , then
we have the desired H-partition.

Corollary 4.9. Every planar graph G has qn(G) ≤ 766.

Proof. By applying Corollary 3.13 on Theorem 4.8, we have qn(G) ≤ 3(1)(28 − 1) + ⌊32(1)⌋ = 766
as desired.

4.2 Reducing the upper bound

Now that we have successfully shown that planar graphs have bounded queue-number, the natural
next step is to see if we can improve the bound. The answer to this is ”Yes, we can!”. In fact, we
can improve the bound from 766 to 49 with only slight modifications to each of the proofs in the
above section and a new lemma. In particular, instead of looking for individual vertical paths in
G, we look for tripods (see Definition 4.10) in G, and the proofs will be similar to the ones above.

Definition 4.10 (Tripod and Bipod). Given G and a spanning tree T . A tripod is a set of at most
3 pairwise disjoint vertical paths where the lower endpoints form a clique. A bipod is a specific case
in which we have 2 disjoint vertical paths where the lower endpoints are connected.

Remark 4.11 (Some notes on tripod). • A vertical path of length ≥ 2 is a bipod simply by
splitting into 2 vertical paths; one being the lower endpoint as a singleton path, and the other
being the remaining path.

• A bipod is a tripod

Example 4.12. Example of a tripod and a bipod in a graph G with spanning tree T that is rooted
at r.
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Figure 6: Example of the tripod formed by Sperner’s triangle

Before we can prove the upper bound of 49, we need to introduce this lemma. This will be
used later when our new partition P we get from tripods yields tw(G/P ) ≤ 3. If we simply apply
Corollary 3.13, we will have a bigger upper bound of 3(3)(23 − 1) + ⌊32(3)⌋ = 67 instead of 49.

Lemma 4.13 (Alam et al.). Let G be planar with treewidth at most 3. Then qn(G) ≤ 5. [Ala+20]

Lemma 4.14. Let G+ be a triangulation and T be a spanning tree of G+ rooted at r, where r is
on the outerface of G+. Let P1, · · · , Pk be pairwise disjoint bipods of T , with k ∈ {1, · · · , 3}, such
that P1 · · ·Pk form a cycle C in G+ with r outside of C.

Let G be the triangulated disc induced by vertices of C and in the interior of C. Then, G has
a partition P into tripods with P1 · · ·Pk being inside P , and G/P is planar with treewidth at most
3, where there exists some bag in G/P containing all the vertices corresponding to P1 · · ·Pk.

We will not be going through the full proof here, as the main idea is very similar to the one
above. However, in the proof above, we partition G into vertical paths. Here, we partition the
cycle into bipods (and thus tripods). Then, like above, we use Sperner’s Lemma to reduce the
problem into smaller triangulated discs, which we can then apply the inductive hypothesis to. Of
important note here is that the triangle from Sperner’s Lemma and the paths Q′

i that go from Pi to
the triangle form a tripod, which is useful for the construction of the partition P of G. (See Figure
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6) Then, like we did above, we replace the boundary paths in the bags with the corresponding
bipods partition in P . Finally, we show that G/P is indeed a valid tree decomposition.

Theorem 4.15. Let G be planar. Then G has an H-partition of layered width 3, where H has
treewidth at most 3.

The proof of this is analogous to that of Theorem 4.8. We show that G/P has treewidth 3 and
G has layered width 3, because any tripod T consists of at most 3 vertical paths, so |T ∩ Vi| ≤ 3
for all layers Vi, and then let H be G/P . With Theorem 4.15, Lemma 4.13, and a small variation
of Corollary 3.13, we have qn(G) ≤ 3(3)(5) + ⌊32(3)⌋ = 49, our current best upper bound for
queue-number on planar graphs.

Corollary 4.16. Every planar graph G has qn(G) ≤ 49.
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