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1 Introduction

1.1 Background and motivation
When information is transmitted through the internet, packets of information are
transferred between a global distribution of servers before reaching one’s devices.
Typically, the packets of data are purely relayed from one server to another throughout
this chain of transmission, without modification to the original information in the
packet. This mode of information transmission is known as network routing, and
a lot of progress has been made on developing efficient routing methods during the
1980s. [2]

However, as shown in the example in Section 2.1, the butterfly network demon-
strates the theoretical limits of network routing. It has been shown that by combining
(or coding) the incoming packets before transmitting, we are able to achieve a higher
information transmission rate. It was not until Ahlswede et al. published their paper
"Network Information flow" in 2000 [1] that established foundation for recent devel-
opments in network coding, the study of how we can algebraically combine messages
to achieve higher information throughput rate.

In addition to theoretical results, there has been research on applying network
coding to potential real-world situations. For instance, researchers have leveraged
network coding in designing distributed storage [3], distributed information sharing
system [8], and peer-to-peer streaming mobile architecture [7]. However, the field is
still relatively new and it has not seen widespread adoption.

Matroids, on the other hand, arise from a purely theoretical setting. There were
introduced by Hassler Whitney in the 1930s, and many, such as William Tutte and
Paul Seymour, made significant contributions to it since then. Matroids can be
considered as a generalization of linear algebra and graph theory and a lot of the
results in graph theory can be transferred to matroid theory. For instance, results
such as Kuratowski’s theorem, Tutte’s matching theorem, and Turán’s theorem, all
have analogs in the matroid settings. It is an active and fascinating research area with
unexpected connections to other fields, such as algebraic geometry and combinatorial
optimization [9].

Network coding allows us to extend the capacity of the network transmission
without using more resources. It allows us to achieve higher information rate that
would otherwise not be possible using simple network routing ideas. In order to
study and optimize coding-based solution, we would first have to understand the
underlying structures of the networks. One natural area of study we can hope to
extend results from is network flow. For instance, theorem such as max-flow min-cut
has found analogs in the network coding setting [19]. Furthermore, there are a lot
of structural similarities between matroids and network coding, as demonstrated by
Dougherty et al. [5]. Thus, it would be highly beneficial if we are able to use tools
from both network flow and matroid theory to better understand the problems in
network coding.
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1.2 Organization
In this project, we aim to explore the connections between network coding and ma-
troid theory, as well as investigating some connections between network coding and
network flow. As such, we will organize the project as follows and state the main
references for each section.

Section 1 Introduction.

Section 2 An introduction to network coding with some illustrative examples, as
well as some results on network capacities.

• Section 2.1 and 2.3: [5]
• Section 2.2: [5], [12]

Section 3 Connections between network solvability and network coding. In particu-
lar, we explore the solvability of multicast network and the complexity of linear
coding.

• Section 3.1: [19]
• Section 3.2: [11]

Section 4 Some definitions and results of matroids with ample examples.

• Section 4.1, 4.2.1, and 4.2.2: [9]
• Section 4.2.3: [18]
• Section 4.2.4: [10]

Section 5 Matroidal network and its algorithmic construction.

• Section 5.1: [5], [6]
• Section 5.2 and 5.3: [5]

Section 6 Some results on the capacity of networks using the matroidal structures.

• Section 6.1, 6.2, and 6.3: [5]

Section 7 Conclusion.

4



2 Network coding fundamentals

2.1 Definitions
Definition 2.1 (Network Construction)
Let A be a finite alphabet set. Fix k,m ∈ Z, a message and a packet are defined to be
vectors in A of length k andm respectively. A network is a directed acyclic multigraph
with an assigned message set. Then, each message is assigned to some node in the
graph, called the source nodes, and each of the source message is demanded by one
or more nodes, called the demand nodes. Nodes that are not source or demand nodes
are called intermediate nodes. A node transmits a packet of information to another
node if an edge exists between the two nodes. In other words, each out-edge of a non-
demand node carries a packet. Lastly, in any single unit of time, only one packet can
be sent through an edge and we further assume transmission of information between
intermediate nodes takes negligible amount of time.

Remark 2.2 The alphabet set A is usually defined to be a finite field.

This definition of network in the network coding context is quite different from
that of graph theory, in which it is usually defined as a (directed) graph. Furthermore,
for notation matters, we define the following terms.

Notation 2.3 Given a network N . Let v be a node in N . We define In(v) to be the
set of packets arrived or originated at v, and Out(v) to be the set of packets emitted
from v. Furthermore, define Ein(v) and Eout(v) to be the in-edges and out-edges of v
respectively.

In network routing, packets arrived or originated at a node can only be rerouted
through its out-edges to other nodes. The node is not permitted to perform any other
operations on the packets. More concretely, for all nodes v in the network that are
not demand nodes, network routing has the restriction that the unique elements in
Out(v) is a subset of the unique elements in In(v). If there exists a way such that all
source messages are relayed to the correct demand nodes, we say the network has a
pure routing solution.

However, in network coding, we relax the restriction and allow each node to per-
form "algebra", or manipulation, on the packets received before sending the packets
out. To put it more formally, let v be a non-demand node in the network, then for
each out-edge e ∈ Eout(v), the packet being transmitted on e is defined as a function
fe on input In(v). Also, for each demand node, say node d demanding messages
m1, · · · ,mk, we assign k different functions to d with input In(d), such that each
function should yield a demanded message. Thus, we have the following definition on
the solvability in the context of network coding.

Remark 2.4 We can in fact merge the definition of function assignment for both
demand and non-demand nodes. For instance, given a demand node with request
messages m1, · · · ,mk, we can do so by creating k auxiliary demand nodes such that
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the original node has an out-edge to each of the new demand nodes, where each of
the new demand nodes ask for a requested message. This will give us a new directed
acyclic graph, and there is only a solution in this new graph if and only if there is
one in the original one.

One main class of network that will be analyzed throughout the project is the
multicast network. For instance, we will be proving some important theorems about
the solvability and computational complexity of multicast networks in section 3.1 and
section 3.2 respectively.

Definition 2.5 A multicast network is a network with only one source node, where
each demand node demands every source message.

2.2 Solvability of networks
Definition 2.6 A network has a coding solution if for every node n, there exists
valid function assignments to each out-edge e ∈ Eout(n) such that every demand
node receives the requested source messages.

There are 2 main types of network coding solution, namely, routing solution and
linear solution, where each imposes different restrictions on the assigned functions.
Furthermore, each solution can either be a scalar or a vector solution.

Definition 2.7 A routing solution is a coding solution where the packets sent from
a node, say n, must be strings of the message symbols in In(n). In some ways, it is
a deterministic shuffling of the characters in In(n).

Definition 2.8 A linear solution is a coding solution where the packets sent from a
node, say n, must be the result of some linear operations on In(n). In particular, the
underlying alphabet must be a finite field, and we can only use vector addition and
vector multiplication by a constant matrix.

Example 2.9 Given a network N with some non-demand node n. In a routing
solution, if In(n) := {abc, xyz}, we can mix and match the message and send axy

as a packet. In a linear solution, if In(n) := {
[
1 2 3

]T
,
[
4 5 6

]T
} with alphabet

A = F7, then we can potentially send
[
1 2 3

]T
+
[
4 5 6

]T
=
[
5 0 2

]T
as a

packet.

Recall that a network has parameters (k,m) that determines the size of the mes-
sages and the size of the packets. In the case of scalar or vector solution, we are
mainly concerned with the case of k = m.

Definition 2.10 Suppose a coding solution exists for a network with parameters
(k,m). If k = m = 1, then it is called a scalar solution. Otherwise, if k = m ≥ 2,
then it is called a vector solution. In the case of k 6= m, we say it is a fractional
solution.
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Remark 2.11 A network that is scalar routing solvable is equivalent to having a
network routing solution, as described in the introduction, where packets are only
allowed to be relayed to other nodes without modification.

With the above definitions, we can finally define what it means for a network to
be solvable.

Definition 2.12 A network is solvable if there is a scalar solution over some finite
alphabet.

Remark 2.13 This is slightly misleading because there can be nonlinear coding so-
lution to a network. However, for the rest of the project, we will be consistent with
this definition and will address any inconsistency that arises.

Remark 2.14 If a network N has a vector solution, say it is of length k, over some
finite alphabet A. Then, it has a scalar solution over the alphabet Ak, so it is solvable.

Note that for a sufficiently large packet size m, with respect to messages size k,
we can fit all messages into any packet, so the network will be (k,m) solvable simply
with a routing solution.

2.2.1 Some examples

To help illustrate the concepts mentioned above, we will introduce a few networks
and show whether they are solvable.

• The butterfly network, as shown in figure 1.

• The M -network, as shown in figure 2.

• The unsolvable network, as shown in figure 3.

Note (Interpretation of the figures)
The label above a node denotes the source messages and indicates the node as a
source node. Similarly, the label below a node denotes the demanded messages and
indicates the node as a demand node.

Proposition 2.15 The butterfly network (figure 1) is scalar linear solvable, but not
scalar routing solvable.

Proof. It is easy to see it is not scalar routing solvable. In order for message a to
travel from node 1 to node 6, it must use the edge e3,4. Similarly, it must use the
edge e3,4 for message b. But, by definition, only one packet can pass through an edge
in any single unit of time, so a scalar routing solution is not possible.

To show it is linearly solvable, let’s first assume A is a finite field. At n1 and n2,
we have no choice but to emit a and b to their out-edges respectively. In node n3,
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Figure 1: Butterfly network Figure 2: M -network

Figure 3: Unsolvable network

Figure 4: Multicast butterfly network
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we have In(n3) = {a, b}. Let f3 = (a + b), so n3 transmits a + b to n4. n4 simply
relays the packet a+ b to n5 and n6. Now, note that In(n5) = {a, a+ b}, from which
it can decode b, the demanded source message, from −(a) + a + b. More precisely,
−a + (a + b) = −Ia + (a + b) where I is the identity matrix of corresponding size
over A. Similarly, we can decode a at node n6. Thus, the butterfly network is scalar
linearly solvable. �

Proposition 2.16 Let the M -network (figure 2) be over some finite alphabet set
A. Then, it is solvable. In particular, it has a vector routing solution over A with
k = m = 2, but it is not scalar solvable over A.

Proof. First, we show that it has a vector routing solution with k = m = 2. Re-
call that a routing solution allows mixing of messages and fe denotes the function
assignment on the edge e. Let the source messages be a := (a1, a2), b := (b1, b2),
c := (c1, c2), and d := (d1, d2), where each element in the tuples is an element of
A. To show it has a vector routing solution, it suffices to give an explicit function
assignments

fe1,3 = (a1, b2), fe1,4 = (a2, b1), fe2,4 = (c1, d2), fe2,5 = (c2, d1).

Note that n3 and n5 receives only one input respectively, so the packets they transmit
are simply relay of their inputs. Now, for the remaining n4, we have the following
assignments

fe4,6 = (a2, c1), fe4,7 = (a2, d2), fe4,8 = (b1, c1), fe4,9 = (b1, d2).

It is easy to verify from here that each demand node has sufficient information to
construct the desired messages.

Now, we have to show that this is not scalar solvable. For the scalar routing
case, we suppose without loss of generality that In(n4) := {b, c}, In(n3) := {a}, and
In(n5) := {d}. Then, it is clear that the demands for n8 cannot be satisfied, since
only n4 has b and c as inputs, but n4 cannot possibly transmit both to n8 in a single
time unit. Hence, it is not scalar routing solvable.

For the scalar linear case, we first assume n4’s output is a linear combination of
the inputs, but this leads to a contradiction. Now, if n4 can only relay input packets
without mixing, then at least one demand node will not get the desired message,
which is again a contradiction. One can refer to [12] for full details. �

Proposition 2.17 The unsolvable network as shown in figure 3 is not solvable.

Proof. Since we are considering the case k = m, only one packet of size same as
the message size can be transmitted from n1 to n2. Clearly, n2 cannot reconstruct 2
source messages from just one packet of information, so it is unsolvable. Note that
if this is possible, we would essentially have a lossless compression algorithm that
guarantees to compress any information to half its size. �
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2.3 Capacity of networks
We have so far introduced the concept of network solvability, but we have not yet
defined a way for measuring its effectiveness. To evaluate the effectiveness of a net-
work, we need the notion of network capacity based on the coding solutions for the
network.

Definition 2.18 If a network N over some alphabet A has a (k,m)-solution, then
we say k/m is an achievable rate for N .

Definition 2.19 The coding capacity of a network over some alphabet A is the supre-
mum over all ratios k/m for which k/m is an achievable rate. Furthermore, we define
routing capacity and linear coding capacity for solutions taken over routing solutions
and linear coding solutions respectively.

Remark 2.20 If A is not specified, then the network coding capacity is the supre-
mum of the coding capacity over all possible alphabets.

Remark 2.21 I believe the use of supremum in the definition is because the choice
of A, namely all possible finite fields, is infinite. It would help intuitively to just think
of it as the maximum capacity over the capacity of all possible choice of A. One can
refer to section 6.2 for a potential motivation for the definition.

Proposition 2.22 If a network is solvable, then the network capacity is at least 1.

Proof. A network is solvable if it has a scalar solution over some alphabet A, which
means k = m = 1. So, the network capacity over A is at least k

m
= 1, which further

implies the network capacity in general is lower bounded by 1. �

Proposition 2.23 Let N be a multicast network with assigned messages M . Then,
N has network capacity at least 1

|M | .

Proof. Let A be some alphabet set and s be the source node generating the messages
M . Furthermore, letM := {m1, · · · ,mn} for some n ∈ Z≥0 and suppose each message
has size k. If, for all e ∈ Eout(s), we define fe(In(s)) = m1⊕m2⊕· · ·⊕mn, where ⊕ is
simply string concatenation, and simply relay the same message over all intermediate
nodes, then, each demand node will have sufficient information to recover the desired
source messages. So, the packet size needed is at most kn, which means, the network
is (k, kn) solvable, and thus, the capacity is at least 1

n
= 1
|M | . �

We have shown above some fairly simple upper and lower bounds on the network
capacity. In section 6, we will discuss more results on network capacities for matroidal
networks.
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3 Network solvability and network flow

3.1 Solvability of multicast network
Recall from definition 2.5, a multicast network is a network with only one source
node, where every demand node demands every source message. Multicast network
is an important class of network that has been actively studied. An example of a
multicast network is shown in figure 4. There are quite a few important results about
the solvability of multicast networks, and one of the most well-known one is due to
Li et al. [19], namely, every solvable multicast network is linearly solvable. To show
this, we have to first introduce the max-flow min-cut analog for network coding and
a concept called linear code multicast (LCM), and then, we can connect both ideas
to the solvability of multicast networks.

3.1.1 Max-flow min-cut for network coding

In network flow theory, the law of commodity flow states that the in-flow volume of
any set of nodes is at least that of the out-flow. It has a direct analog in the network
coding settings, but phrased in terms of information. Roughly speaking, the law of
information flow states that any information flowing out of a set of nodes can be
reconstructed from the information flowing into the set of nodes.

Definition 3.1 Let N be a multicast network1 with source node S. For any non-
source node T , an S, T -cut is a set of nodes C that includes S but excludes T . The
value of the S, T -cut is the number of edges with one end in C and another not in C.

Definition 3.2 An S, T -flow F is a set of edges E where each edge in E is at maxi-
mum capacity (i.e. information is being transmitted over that edge) while satisfying
the following conditions,

1. The sub-network induced by E is acyclic.

2. Each node other than S and T has the same number of in-flowing edges and
out-flowing edges in E.

3. The number of edges in E out-flowing from S is same as the number of edges
in E in-flowing to T .

We say the edges in E are busy edges, and the volume of F is the number of busy
edges with one end from S.

Definition 3.3 Fix a non-source node T . The maximum volume over all S, T -flows
is defined to be maxflow(T ) and the minimum value over all S, T -cuts is defined to
be mincut(T ).

1Here, we assume k = m = 1 over some alphabet A. In other words, each edge carries 1 alphabet.
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Now, with all the necessary definitions introduced, we can finally state the theo-
rem.

Theorem 3.4 Let S be a source node and T be a non-source node. Then,

maxflow(T ) = mincut(T ).

3.1.2 Linear code multicast

The main idea of a linear multicast is to assign a vector space to each node and a
vector to each edge. In particular, the vectors corresponding to the in-edges of a node
should span the vector space assigned to the node, which fits in well with the law of
information flow.

Definition 3.5 Let Ω be a d dimensional vector space over a sufficiently large field
where

d = max{maxflow(T ) : T is a non-source node}.
A linear code multicast is a function v that assigns a vector space to each node and
a d-dimensional vector to each edge, while satisfying the following properties,

1. v(S) = Ω,

2. v(XY ) ∈ v(X) for every edge XY in the network, and

3. For all collections C of non-source nodes,

span {v(T ) : T ∈ C} = span {v(XY ) : X ∈ C, Y 6∈ C}.

We can interpret the third property as the law of information flow for linear
coding, which states that the information flowing out of a set of non-source nodes
can be derived from the information flowing into the set of nodes (Condition 3),
since the out-flowing information depends on the information at the originating node
(Condition 2). Furthermore, from this definition, we can see that the vector space
assigned to a node is completely determined by its in-edges. Thus, for any non-source
node, the function v is completely determined by the vector assignment to each of its
in-edges. All these together imply that for any non-source node T , any out-flowing
vector is assigned to be a linear combination of the in-flowing vectors.

Then, we have a natural scheme for message transmission over this LCM model.
Let S be the source with information m. We encode m by a d-dimensional row vector,
which we call the information vector . The packet of information being transferred at
edge XY is defined to be the cross product m× v(XY ). By above, we know that all
out-flow vectors are just linear combinations of in-flow vectors, so this transmission
scheme is a reasonable model for linear coding.

From [19], we know that given an LCM for some multicast network, dim(v(T )) ≤
maxflow(T ) for all non-source node T . In order to get equality here, we need to
restrict the class of LCM to generic LCM, as defined below.
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Definition 3.6 A generic LCM v is an LCM where for any collection of edges,

E = {X1Y1, · · · , XkYk} and k ≤ d = dim(Ω),

we have v(Xi) 6⊂ span{v(XjYj) : j 6= i} for all 1 ≤ i ≤ k if and only if {v(e) : e ∈ E}
is linearly independent.

One can refer to Example 3.1 in [19] for an example of an LCM that is not generic.

Theorem 3.7 If v is a generic LCM, then dim(v(T )) = maxflow(T ) for all non-
source node T .

Proof. Let C be a cut. We define dim(C) = dim(span {v(XY ) : X ∈ C, Y 6∈ C}).
Let N be a multicast network, V be its vertices, T be a non-source node, f be the
value of maxflow(T ), and v be a generic LCM for N . It suffices to consider the case
dim(v(T )) ≥ f , since the other direction is true for any LCM .

First, suppose for a contradiction, dim(v(T )) < f . Then, there exists at least
one S, T -cut U where dim(U) < f , since dim(v(T )) < f implies dim(V \ {T}) < f .
Choose U to be the minimal cut, in the sense that removing any node in the cut will
result in it having dimension greater than f . Let C be the edges in the cut U , and B
be the boundary nodes. These are the nodes where it is an endpoint of some edges
in the cut. Then, for all W ∈ B, we can show that v(W ) 6⊂ span{v(XY ) : XY ∈ C}
by a minimality argument on the choice of U .

Now, v(W ) 6⊂ span{v(XY ) : XY ∈ C} implies v(W ) 6⊂ span{v(XY ) : XY ∈ (C \
{WZ})} for any WZ ∈ C, since (C \ {WZ}) ⊂ C. This implies, from the definition
of a generic LCM, any subset A of {v(XY ) : XY ∈ C} with |A| ≤ d is linearly
independent. Since U is a cut, by max-flow min-cut, |C| ≥ f since f = maxflow(T ).
Furthermore, since d = maxflow(T ) over all non-source node T , we have d ≥ f .
Consequently, dim(U) = dim({v(XY ) : XY ∈ C}) = min{d, |C|} ≥ f , which is a
contradiction. So, dim(v(T )) = maxflow(T ) as desired. �

Given this property of a generic LCM, it is natural to ask whether there exists
a generic LCM for all multicast networks. Yes, there exists, over a sufficiently large
field. In fact, we have an algorithm that construct such a generic LCM for a given
multicast network. First, we will state a few preliminary lemmas.

Lemma 3.8 Let N be a multicast network. There is a relabelling of nodes to
X0, X1, · · · , Xn where every edge in the network goes from a smaller indexed node to
a higher indexed node. If a network satisfies this property, we say it is relabelled.
Proof (Sketch).
One can use any topological sorting algorithm (i.e. DFS). However, note that this
works only because underlying the multicast network is an acyclic graph. �

The following lemma is needed to show the validity of a particular step in the
LCM construction algorithm. The goal of this is to show that for a vector space V ,
the number of lower dimensional subspaces required to cover it is proportional the
size of its base field.
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Lemma 3.9 Let V be a d-dimensional vector space over a field F. Fix S to be a
k-dimensional subspace of V where k ≤ d. Let m ∈ Z≥0 with m < |F|. Then, if
Y := {Y1, · · · , Ym} is a set of m distinct subspaces, where S 6⊂ Yi for all 1 ≤ i ≤ m,
then S 6⊂ ∪m

i=1Yi.

Proof. The main idea of the proof is to consider S ∩Yi for each i. Note that dim(S ∩
Yi) = dim(S) + dim(Yi) − dim(S + Yi) ≤ min{dim(S), dim(Yi)}. Since S 6⊂ Yi,
dim(S+Yi) > max{dim(S), dim(Yi)}, so dim(S∩Yi) < min{dim(S), dim(Yi)}, which
implies dim(S ∩ Yi) ≤ dim(S)− 1 = k− 1. Furthermore, note that S ⊂ ∪m

i=1Yi if and
only if S = ∪m

i=1(Yi ∩ S). Since dim(S ∩ Yi) ≤ k− 1, we have |S ∩ Yi| ≤ |F|k−1. Since
S is a k-dimensional subspace, |S| = |F|k. Then, by a cardinality argument, since
m < |F|, |S| = |F|k > m|F|k−1 ≥ |∪m

i=1(Yi ∩ S)|. Consequently, S 6= ∪m
i=1(Yi ∩ S), so

S 6⊂ ∪m
i=1Yi. �

Data: A relabelled multicast network N with vertices V := {X0, · · · , Xn}
and edges E.

Result: A generic LCM v for N .
Initialize v(XY ) = 0 for all edges XY ∈ E
for (i = 0, i ≤ n, i+ +) do

Let S = {XiY ∈ E}
for edge XiY ∈ S do

Let w ∈ V (Xi) such that w 6∈ span{v(AB) : AB ∈ C} for any set C of
≤ d− 1 edges that satisfies v(Xi) 6⊂ span{v(AB) : AB ∈ C}
Set v(XiY ) = w

end
Let L = span{v(e) : e are in-edges to Xi+1}
Set v(Xi+1) = L

end
Algorithm 1: Constructing LCM of a given network

Theorem 3.10 For a sufficiently large field F, algorithm 1 constructs a generic LCM
for any multicast network. 2

Proof (Sketch).
The main idea of the algorithm is to assign a vector space to each node iteratively
while maintaining the generic property. Now, one unclear part is how we are able to
pick w in the algorithm. To see this, note that for any give node Xi, there are only
finitely many, say n, sets C satisfying v(Xi) 6⊂ span{v(XY ) : XY ∈ C}. By applying
lemma 3.9, if |F| > f(m) where m = ∑d−1

i=1

(
|E|
i

)
, then v(Xi) 6⊂ ∪C span{v(XY ) :

XY ∈ C}, since n is upper bounded by m, which counts the number of possible
2We should emphasize here that our definition of multicast network is acyclic, which matches the

necessary condition in the original paper.
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d − 1 choices of edges in the network. Hence, there exists some vector w ∈ V (Xi)
that is not in any of the linear span. It remains to show that this LCM is generic.
One can show that any set of edges {X1Y1, · · · , XmYm} where m ≤ d that satisfies
v(Xi) 6⊂ span{v(XjYj) : j 6= i} for all 1 ≤ i ≤ m, is assigned linearly independent
vectors under v, which can be shown by induction on m. Remaining details can be
found in [19]. �

Theorem 3.11 Given a generic LCM v, every non-source node T can receive the
source messages at a rate equal to maxflow(T ).

We omit the proof for this. One can refer to example 3.5 in [19] for details. With
this theorem, we can finally prove the main result.

Corollary 3.12 Every solvable multicast network, over a sufficiently large base field,
is linearly solvable.

Proof. By theorem 3.10 above, every multicast network over a sufficiently large base
field has a generic LCM. Then, by theorem 3.11, a generic LCM provides guarantee
that each node T can receive the source messages at a rate equal to maxflow(T ). Let
N be a multicast network with source node S, transmitting an information vector of
length k. Then, for any demand node T , a solvable multicast network cannot have
an S, T -cut of value less than k, because it must be able to reconstruct k units of
information from its in-flow. Then, by max-flow min-cut, the maximum S, T -flow is
at least k. So, by the observation above, each node in a generic LCM is able to receive
at a rate of at least k, which means every node will be able to receive the messages
in a single unit time. Thus, N is linearly solvable. �

3.2 Computational complexity of network solutions
In this section, we will give a brief overview of the complexity of finding linear network
coding solutions, following the paper of Lehman et al. [11] Our goal here is to classify
the computational complexity of the solvability of various classes of networks. First,
we characterize different classes of network using 4 different parameters.

Definition 3.13 (Classification of network structure)
For a given network N , N is in the class of (α, β, γ, δ) according to the following
classification.

• α =

S if N has only one source node
M if N has more than one source node

• β =

S if N has only one demand node
M if N has more than one demand node
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• γ =


A if every source node has ALL the messages
D if each source node has a DISJOINT set of messages
N if there is NO GUARANTEE on the source nodes

• δ =


A if every demand node demands ALL the messages
D if each demand node demands a DISJOINT set of messages
N if there is NO GUARANTEE on the demand nodes

We say (α, β, γ, δ) is a network class.

Then, we separate the potential complexity of solving the network into 3 main
types. In particular, for each possible network class, we classify it into one of the
three groups below.

Definition 3.14 (Classification of network complexity)
Given a network class C, it is associated with

• Trivial: If all solvable networks in C are trivially solvable by relaying messages
without encoding.

• Linear : If some networks in C cannot be solved trivially and require linear
coding.

• Hard: If some networks in C have linear coding solutions that are hard to find.
Also, some networks are not linearly solvable, but are non-linearly solvable.

The terms Trivial, Linear, and Hard are called the complexity classes of C.

We will show an example of network class for each Trivial, Linear, and Hard. It
would help illustrate how one could attempt to prove related results for other meth-
ods of network classifications, since each of the complexity class employs a different
approach. Roughly speaking, the Trivial class utilizes ideas from network flow, the
Linear class uses Sander-Li’s algorithmic result[16], and the Hard class reduces to a
3-SAT instance to achieve NP-hardness.

3.2.1 Trivial complexity class

Notation 3.15 For a demand node n, we write Mdemand(n) as the number of mes-
sages n demands.

Theorem 3.16 The network class (M,M,A,D) is trivial.

Proof. Let N be a network in the class with n source nodes, m demand nodes, and
k messages. If N is solvable, then we want to show that it is trivially solvable. First,
we create an auxiliary network N ′ from N . Then, we create a source node S that
generates all the messages, and S has k edges to each of the original source node.
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Figure 5: Original network N Figure 6: Auxiliary network N ′

Also, we create a sink node T that demands all the messages and, for each original
demand node ti, there areMdemand(ti) edges from ti to T . So, all of the original source
and demand nodes are now simply intermediate nodes. (See figure 6 for an example)
It is easy to see that N is solvable if and only if N ′ is solvable.

Now, if N ′ is solvable, then there must be a flow from S to T that transmits at
least k messages. Furthermore, we realize that it implies there is no cut of size less
than k. So, by Menger’s theorem, we know there exists k-edge disjoint paths from S
to T . Furthermore, in order for T to receive k messages, it must uses all of the D(ti)
edges from ti to T , for each original demand node ti, which means all ti has the an
in-flow of D(ti) messages. Since every source node contains all of the messages, the
choice of message to send from each of the k edge-disjoint paths can be chosen such
that the original demands are satisfied. This completes the proof since that would
imply there exists a flow in the original problem that flows from the source nodes to
the corresponding demand nodes simply through routing. �

3.2.2 Linear complexity class

The main network class where one can solve a network in polynomial time using linear
coding is (M,M,N,A). Sanders et al. [16] found a deterministic polynomial time
algorithm to get a linear solution for multicast networks. However, the original result
is for multicast networks, which means it only has a single source that generates all
messages, whereas, we have multiple source nodes here. This can be easily generalized
to the multiple sources case. We can reduce the network to a single source network by
creating an auxiliary graph with a single source node that maps to all of the original
source nodes. The remaining details can be found in [11].
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3.2.3 Hard complexity class

Definition 3.17 Given variables x1, · · · , xn, a 3-CNF formula is of the form A1 ∧
A2 ∧ · · · ∧ Am where each Ai = (lj ∨ lk ∨ ll) and li is a literal with variable xi, for
m ∈ N and 1 ≤ j, k, l ≤ n. A 3-SAT problem is one that asks whether a 3-CNF φ is
satisfiable. In other words, it ask whether there is a truth value assignment to each
variable such that φ evaluates to true.

Definition 3.18 Given a 3-CNF formula φ = C1 ∧ C2 ∧ · · · ∧ Cm with variables
x1, · · · , xn, we constructs the reduction network as follows:

1. For each variable xi, we create 2 nodes si and ri, and an edge from si to ri.

2. For each clause Cl = (lj∨ lk∨ ll), where lj, lk, ll are literals for variables xj, xk, xl

respectively, we create nodes ul, vl, and tl.

(a) We connect each of rj, rk, and rl to tl.
(b) Similarly, we connect each of sj, sk, and sl to both ul and vl.
(c) Lastly, we connect ul and vl to tl.

3. We let each si be a source node, generating messages Mi and M̄i.

4. Similarly, for each clause Cl = (lj∨lk∨ll) and assume, without loss of generality,
Cl = (xj ∨ x̄k ∨ xl), we let tl be a demand node requesting messages Mj, M̄k,
and Ml.

Lemma 3.19 Let φ be a 3-CNF formula. Then, φ is satisfiable if and only if the
reduction network is linearly solvable.

Proof. Note that each clause contains 3 variables, so if φ is satisfiable, then at least
1 of the variable must be true, and at most 2 can be false. Let π be a satisfiable
assignment to φ. For any variable xi, if xi is true in π, then we send the message Mi

from si to ri, and the message M̄i to all other edges from si. Otherwise, if xi is false,
we send M̄i to ri, and Mi to all other edges.

Consider a clause in φ, say Cl = ( xi︸︷︷︸
literal 1

∨ x̄j︸︷︷︸
literal 2

∨ xk︸︷︷︸
literal 3

), with corresponding node

(tl, ul, vl). Then, we consider the case for each literal in the clause. If the literal, say
literal 1, is true under the assignment π, tl will receive the corresponding message
through using the ritl edge. Otherwise, if it is false, ti will receive the message from
one of the ul or vl node. By the observation above, since at most 2 variables in a
clause can be false, we are always able to get the messages corresponding to the false
variables from ul and vl. So, we have shown here that if φ is satisfiable, the reduction
network has a linear solution.

For the other direction, we suppose there exists a linear solution to the reduction
network, and then we construct a valid assignment π for the 3-CNF formula φ. If the
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Figure 7: Example of a reduction gadget for the clause Cl = (xi ∨ xj ∨ xk)

output of ri only depends on the message Mi, we assign xi to be true. Otherwise, if
ri depends only on message M̄i, we assign it to be false. If ri is dependent on a linear
combination of both Mi and M̄i, we assign the truth value of xi arbitrarily.

Again, consider a clause Cl = (xi ∨ xj ∨ xk) with corresponding nodes (tl, ul, vl).
Let fi, fj, fk denote the output functions from ri, rj, rk to tl respectively, and g, h
denote the output functions from ul and vl to tl respectively. Then, by a a simple
result in [11] (Lemma 4.1), we know that one of fi, fj, fk is a function dependent only
on Mi,Mj,Mk respectively.

Note that, by design, the dependency of the fi’s corresponds to the truth value of
xi. For instance, if fi depends only on M̄i, then we know the truth value assigned to
xi is false. By the construction of the reduction network, if tl demands M̄i,Mj,Mk,
then we know φ has the clause (x̄i ∨ xj ∨ xk), which evaluates to true under π. Since
this holds for all clauses in φ, φ is satisfiable under the assignment π. �

Since the 3-SAT reduction network is in the class of (M,M,D,N), we have the
following result as a direct consequence of the above lemma.

Theorem 3.20 Determining whether there is a linear coding solution to instances
in the network class (M,M,D,N) is NP-hard.
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4 Matroid fundamentals

4.1 Definitions and examples
We can think of a matroid as an abstraction of linear independence of vector spaces in
linear algebra. More concretely, a matroid has a ground set S, and an independence
relation on S, usually defined by an independent set. However, this independence
relation can be defined in various other ways. Here, we provide 2 equivalent definitions
of matroids, one using independent sets and the other using the matroid rank function.

Definition 4.1 A matroid is a pair (E, I) consisting of a finite set E, called the
ground set, and a collection I of subsets of E, called the independent sets, satisfying
the following 3 axioms.

(I0) The empty set is independent

(I1) Subsets of independent sets are independent, and

(I2) For each X ⊆ E, all maximal independent subsets of X have the same size,
denoted r(X), which is called the rank of X.

Definition 4.2 A matroid is a set S equipped with a rank function r satisfying the
following 3 axioms.

(R0) r(∅) = 0

(R1) For X ⊆ Y ⊆ S, r(X) ≤ r(Y ).

(R2) r(X) + r(Y ) ≥ r(X ∪ Y ) + r(X ∩ Y ).

(R2) is also called the submodular inequality.

Remark 4.3 For representable matroids, we can think of the submodular inequality
as a reinterpretation of the dimension theorem for linear subspaces, where r is the
rank function for a subspace,

r(X) + r(Y ) ≥ r(X ∪ Y ) + r(X ∩ Y ).

There are many more cryptomorphically equivalent definitions for matroids. For
instance, one can define it using bases, circuits, and hyperplanes. However, through-
out the remainder of this project, we will be using the independent sets definition for
matroid. One of the most important example of matroid is called the column matroid.
The example demonstrates a clear relation between linear independence from linear
algebra and independence in matroid.

Definition 4.4 Let A be a matrix over some field F. Let E := {e1, · · · , en} be the
(multi)-set of columns of A. Then, the column matroid of A is M := (E, I) where
I := {S ⊆ E : S is linearly indepedent}.
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Figure 8: Example of a cycle matroid

Example 4.5 Let A be a matrix over Z where

A =
[
1 0 0
0 1 2

]
.

Then, the column matroid of A is M := (E, I) where

• E := {
[
1
0

]
,

[
0
1

]
,

[
0
2

]
}, and

• I := {∅, {
[
1
0

]
}, {

[
0
1

]
}, {

[
0
2

]
}, {

[
1
0

]
,

[
0
1

]
}{
[
1
0

]
,

[
0
2

]
}}.

Note The uniqueness of S ∈ I is determined by the index of the ei’s in E, not the
actual content of the vector.

Another important example comes from graph theory, known as the cycle matroid.
Given a graph, one can consider the edges as the ground set and all subsets which
do not contain a cycle to be independent. This leads to a class of matroids known as
graphic matroid, and many results from graph theory transfers to graphic matroid. In
particular, if a result in graph theory can be rephrased in terms of edges only, such as
the cycle exchange lemma, then there is a high chance that the result is transferable
to the graphic matroid settings.

Definition 4.6 Let G be a graph. Let M := (E, I) where E := E(G) is the edge
set of G and I := {S ⊆ E : S does not contain a cycle}. Then, we say M is a cycle
matroid for G.

Example 4.7 Given a graphG, as defined in figure 8, we can define the cycle matroid
M = (E, I) as follows.

• E := {ab, ac, ad, bd, be, de, df}, and

• I := {all subsets of E that do not induce a cycle}.
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Definition 4.8 A matroid is called graphic if it is a cycle matroid of some graph.

Some other examples of matroids that arise from graph theory include the tangle
matroid, introduced by Robertson and Seymour in Graph Minors X. [15] There are low
order decomposition theorem in graphs, such as decomposition into components and
blocks for order 1 and 2 respectively, but the case for 4 or higher is not well defined.
Roughly speaking, tangle is a dual notion of branch-decomposition in a graph and
it generalizes the idea of high-connectivity components. For instance, elements in a
tangle of order 1 has a bijective mapping to components in a graph.

Remark 4.9 One can also think of a hypergraph as a matroid without certain re-
strictions. In particular, a hypergraph H = (X,E) is a matroid if E satisfies the
independence axioms.

4.2 Representability of a matroid
4.2.1 Representable matroid

The idea of representable matroid will be used in later sections when discussing the
capacity of matroidal networks.

Definition 4.10 A matroid is F-representable if it is a column matroid over F. A
matroid is representable if it is F-representable over some field F.

Trivially, column matroids are representable.

Theorem 4.11 (Ingleton’s inequality)
If X1, X2, X3, and X4 are sets of elements in a representable matroid, then

r(X1) + r(X2) + r(X1 ∪X2 ∪X3) + r(X1 ∪X2 ∪X4) + r(X3 ∪X4) ≤
r(X1 ∪X2) + r(X1 ∪X3) + r(X1 ∪X4) + r(X2 ∪X3) + r(X2 ∪X4).

Ingleton’s inequality is an important property of representable matroids because
it can be used to show some matroids are not representable. For instance, we used it
to show the Vámos matroid is not representable later. However, this is not a sufficient
condition for a matroid to be representable.

Definition 4.12 We say a matroid is binary if it is GF (2)-representable.

Proposition 4.13 Graphic matroids are binary matroids.

Proof. Let M be a cycle matroid for a graph G. Then, the incidence matrix A for G
is a binary representation of M . To show this, consider v ∈ GF (2)|V | and vTA. The
left null-space is the set of vectors v where vTA = 0, which means v is a constant on
each component of the graph, because we would get an entry of 1 somewhere in vTA
otherwise. So, the dimension of the left null space of A is the number of components
of G, which implies rank(A) = |V | −# of components of G. This means the rank is
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Figure 9: Fano matroid Figure 10: Non-Fano matroid

consistent with the rank of the set E(G) ofM , since the maximal spanning forest has
|V | − # of components of G edges. Then, applying this argument to any subgraph
of G, we have that the rank function is consistent with the corresponding submatrix
of A. So, A is a binary representation of M . �

Definition 4.14 A matroid is regular if it is F-representable for all fields F.

Proposition 4.15 All graphic matroids are regular.

Remark 4.16 The regular matroid decomposition theorem shows that nearly all
regular matroids are constructed by gluing together graphic matroids in certain ways.

Definition 4.17 The Fano matroid, denoted F7 := (E, I), is defined as

• E = {a, · · · , g}, and

• I = {S ⊆ E : |S| ≤ 3} \ {{a, b, c}, {a, f, e}, {a, g, d}, {b, d, f}, {b, e, g}, {c, d, e},
{c, f, g}}.

Pictorially, we can define I as the set of all sets of size at most 3 except the colinear
triples (including the circle {b, d, f}) as shown in figure 9.

The non-Fano matroid, denoted F−7 , is defined similarly. It is essentially the same
as the Fano matroid, but with the set {b, d, f} removed from I, so the original circle
linking {b, d, f} is removed, as shown in figure 10.

Definition 4.18 The Pappus matroid is defined in figure 11 where

• E := {a, · · · , i}, and

• I := {all sets of size at most 3 and are not colinear}.
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Figure 11: Pappus matroid Figure 12: Non-Pappus matroid

The non-Pappus matroid is defined similarly, but with the line {g, h, i} removed
from I, as shown in figure 12.

Proposition 4.19 The Fano matroid is binary.

Proof. One can easily check that the following matrix over GF (2) is a valid column
matroid representation 1 0 0 0 1 1 1

0 1 0 1 0 1 1
0 0 1 1 1 0 1

 . �

Remark 4.20 In fact, the Fano matroid is F-representable if and only if F has char-
acteristic 2. Furthermore, the non-Fano matroid is F-representable if and only if F
has characteristic other than 2.

Remark 4.21 We will just state without proof that the Pappus matroid is repre-
sentable.

4.2.2 Non-representable matroid

Definition 4.22 The Vámos matroid is defined in figure 13 where

• E := {a, · · · , h}, and

• I := {all sets of size at most 4 that are not coplanar}. (The triangles, such as
{a, c, e}, {b, d, h}, are not considered coplanar.)

Proposition 4.23 The Vámos matroid is not representable.
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Figure 13: Vámos matroid

Proof ([13]).
Let X1 := {a, b}, X2 := {c, d}, X3 := {e, f}, and X4 := {g, h}. These four sets
X1, X2, X3, X4 do not satisfy the Ingleton’s inequality. In particular,

r(X1) + r(X2) + r(X1 ∪X2 ∪X3) + r(X1 ∪X2 ∪X4) + r(X3 ∪X4)
= 2 + 2 + 4 + 4 + 4 = 16
≤
r(X1 ∪X2) + r(X1 ∪X3) + r(X1 ∪X4) + r(X2 ∪X3) + r(X2 ∪X4)
= 3 + 3 + 3 + 3 + 3 = 15.

Thus, the Vámos matroid is not representable. �

Remark 4.24 Again, without proof, we will just state that the non-Pappus matroid
is not representable.

4.2.3 Computational complexity of representability testing

In analyzing matroidal algorithms, researchers often assume the matroid input is given
by an independence oracle, where the oracle takes a set of matroid elements as input
and returns whether the set is independent. Problems such as whether a matroid is
representable over any field, fields of a certain characteristic, or even a given field F
is in general very difficult. In particular, any independence oracle-based algorithm to
solve the problems above for a general matroid M with n vertices will require at least
O(2n/2/n1/2) time [18]. On the bright side, there are some representability problems
that are polynomial-time solvable. For instance, there exist efficient algorithms for
graphic matroids, due to Seymour [17], and algorithms for regular matroids, due to
Truemper [18].
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4.2.4 Number of representable matroids

At last, we mention a recent result by Nelson on an upper bound for the number of
representable matroids [14].

Theorem 4.25 For sufficiently large n, there are at most 2n3/4 representable ma-
troids of size n.

A direct corollary of this is that the number of representable matroids with respect
to all possible matroids is negligibly small, since it has been shown by Knuth [10] that
there are around 22n matroids of size n. So, representable matroids are indeed a really
special class of matroids.
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5 Linking network coding and matroid theory
We have introduced the two topics that are core to this project: network coding
and matroid theory. However, we have yet to show how these two ideas connect.
In this section, we will provide an algorithm for constructing networks from a given
matroid. Throughout this process, some properties of matroids will be preserved to
the constructed network, and thus allowing us to better understand some specific
network coding problems.

5.1 Matroidal network
Definition 5.1 LetN be a network with messagesM and packets P . LetM = (S, I)
be a matroid with rank function r. A network ismatroidal overM if there is a function
f : M ∪ P → S that satisfies the following properties.

1. f |M is injective,

2. f(M) is independent (f(M) = {f(m) : m ∈M}), and

3. r(f(In(n))) = r(f(In(n) ∪Out(n))) for any node n.

The function f is also called the network-matroid mapping.

Remark 5.2 The definition here might seem a bit arbitrary. Properties (1) and
(2) are some relatively natural definitions to make. We are just mapping messages
to the ground sets and making sure these sources messages are independent in the
matroid. However, property (3) is a bit more complicated. I think the intuition here
is that we are capturing the idea of information with the rank function, and property
(3) makes sure the law of information flow is satisfied. In particular, the out-flowing
information at node n is dependent on the in-flowing information to n. Also, I believe
the definition is related to the definition of polymatroid assignment definition that
will be introduced later in section 6.

There is a nice result by Dougherty et al. [6] relating linear solvability and ma-
troidal network, which allows us to potentially construct networks that are not linearly
solvable by constructing a matroidal network from a matroid that is not representable.

Theorem 5.3 If a network is linearly solvable, then it is matroidal over a repre-
sentable matroid.

Proof ([6]).
Let N be a network with source messages M := {m1, · · · ,mm}. Each outedge from
node a to b is a function of In(a), satisfying linearity. Let xi be the set of variables
representing source messages and packets (out-edges). Then, each xi is in fact some
linear combination of the messages, namely

xi = c1m1 + · · · , cmmm.
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In particular, xi = mj for some j if xi is a source message. Without loss of generality,
suppose there are n out-edges. Let Ci denotes the vector

[
c1 · · · cm

]T
for xi. Then,

we construct the matrix C where

C =
[
C1 | · · · | Cn+m

]
.

Let M be the column matroid for C with rank function r. We claim that N is
matroidal over M , under the network mapping f(xi) = Ci. It suffices to check each
of the network-matroid mapping is satisfied.

1. It is clear that f is injective.

2. Note that if xi is a source message, f(xi) = Ci =
[
0 · · · 0 1 0 · · · 0

]T
︸ ︷︷ ︸

1 at the jth-entry

so

{f(xi) : xi is a message} = {e0, · · · , em}, where each ei is the standard basis
vector. So, f(M) is clearly independent.

3. By definition, for any n, each xi ∈ Out(n) is a linear combination of packets or
messages from In(n). This implies r(f(In(n))) = r(f(In(n) ∪Out(n))). �

Corollary 5.4 All solvable multicast network is matroidal.

Proof. In the corollary 3.12 from section 3.1, we show that all solvable multicast net-
work is linearly solvable. Thus, by theorem 5.3 above, all solvable multicast networks
are matroidal. �

5.2 Algorithmic construction of matroidal networks
A matroidal network can be constructed from a matroid using algorithm 2, as shown
below. It should be noted that the algorithm takes in a matroid M := (S, I), and
output a network N , but the network constructed needs not be unique, since there are
many choices one is allowed to make during the construction. Precisely, the output
will be a network N , with messages M , nodes N , and packets P , along with the
network-matroid mapping f , and an auxiliary function g that maps elements in S
from the matroid to the nodes N in the network. The construction of a matroidal
network does not imply solvability, or in the very least, linear solvability. In fact,
one can construct a matroidal network that has no linear solution using Fano and
non-Fano matroids, as remarked in section 6.2.

Remark 5.5 In [5], it states that this algorithm works for most, but not all matroids.
However, I currently do not have a concrete matroid to show that this algorithm fails.
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Data: A matroidM := (S, I) with rank r.
Result: A matroidal network N := (N,M,P ), network-matroid mapping f ,

and auxiliary function g.
Let N := {n1, · · · , nr}, M := {m1, · · · ,mr}
Choose a basis B = {b1, · · · , br}
Let f(mi) = bi and g(bi) = ni for all 1 ≤ i ≤ r

while there exists a circuit {x0, · · · , xj} where g(x0) is not defined, but
g(x1) · · · g(xj) are all defined do

/* For 1 ≤ i ≤ j */
Add a new node y
Add edges e1, · · · , ej with corresponding packets p1, · · · , pj

Connects g(xi) to y using edge ei

Let f(pi) = xi

/* For i = 0 */
Add a new node n0
Add edge e0 with corresponding packet p0
Connect y to n0 using edge e0
Let f(p0) = x0 and g(x0) = n0

end

/* Optional (As many times as desired) */
if {x0, · · · , xj} is a circuit where g(x0) is a source node then

Let m be the message associated with g(x0)
Add a new demand node y that demands message m
Add edges e1, · · · , ej with corresponding packets p1, · · · , pj

Connects g(xi) to y using edge ei

Let f(pi) = xi

end

/* Optional (As many times as desired) */
if {x1, · · · , xr} is a basis then

Add a new demand node y that demands all source messages
Add edges e1, · · · , er with corresponding packets p1, · · · , pr

Connects g(xi) to y using edge ei

Let f(pi) = xi

end
Algorithm 2: Network construction from a matroid
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Figure 14: Step 1

Figure 15: Step 2

Figure 16: Step 3 Figure 17: Step 4

5.3 Some examples
We will construct some matroidal networks using the algorithms above. In particular,
we will show the construction of the butterfly network from the uniform matroid U2,3.
(See definition 5.6)

Definition 5.6 The uniform matroid Ur,n is a matroid (E, I), where E := {1, · · · , n}
and I := {all subsets of size at most r}.

We can follow the steps below to construct the butterfly network, as shown in 1,
from U2,3.

Step 1: First, we create nodes n1, n2 and messages m1, m2. Then, we choose a
basis B := {1, 2}. For the network-matroid mapping f , we let f(m1) = 1 and
f(m2) = 2. Lastly, for the node mapping, we let g(1) = n1 and g(2) = n2.
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Step 2: The only circuit in U2,3 is the ground set itself, namely {1, 2, 3}. Note that
g(3) is not defined, so we add a new node n3 with edges n1n3 and n2n3, carrying
packets p1 and p2 respectively. Then, we add a new node n4, which is connected
from n3 and the edge n3n4 carries the packet p3. Furthermore, we update the
function f for the new packets so that f(p1) = 1, f(p2) = 2, and f(p3) = 3.
Lastly, we update the node mapping so that g(3) = n4.

Step 3: Now, note that {2, 3, 1} is a circuit with source node g(2) = n2, which
generates the message m2. We add a new demand node n5, with edges g(1)n5 =
n1n5 and g(3)n5 = n3n5 carrying packets p4 and p5. This new node n5 demands
the message m2. Finally, we update f where f(p4) = 1 and f(p5) = 3.

Step 4: Similar to step 3, we use the circuit {1, 2, 3}, which has the source node n1
generating the message m1. We add the demand node, new edges, new packets,
and demand messages accordingly. At last, we update the function f for the
new packets.

To help with understanding the algorithm, we can find a few more examples of
matroidal networks constructed from the Fano, non-Fano, and Vámos matroid in [5].
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6 Capacity of networks using matroid theory

6.1 Polymatroid upper bound
Definition 6.1 Let X be a discrete random variable. The Shannon entropy function
(SEF) is defined to be

H(x) =
n∑

i=1
P (xi) log(P (xi)),

where xi are the possible outcomes of X and P is the probability function.

Given a solvable networkN , if we consider our messages to be independent random
variables and model the capacity of the network by measuring the entropy as the
messages get transmitted through N , then it must satisfy the following properties,
where H is the Shannon entropy function.

Definition 6.2 (Necessary condition for solvable network using SEF)
1. H(M) = k|M | for any subset of messages M .

2. H(p) ≤ m for any packet p.

3. H(In(n)) = H(In(n) ∪Out(n)) for any node n.

Furthermore, a few additional Shannon-type information inequalities must be sat-
isfied when we use Shannon entropy function on a set of random variables. These
inequalities are sometimes known as the polymatroidal axioms. More formally, we
have the following definition.

Definition 6.3 Given a finite set S and a function f : S → R≥0. If f satisfies the
following axioms,

N1: f(∅) = 0,

N2: For A ⊆ B ⊆ S, f(A) ≤ f(B), and

N3: For A,B ⊆ S, f(A) + f(B) ≥ f(A ∪B) + f(A ∩B),

then, we say f is a polymatroid.

The main reason for this definition is to provide a reasonable capacity upper bound
using polymatroid.

Definition 6.4 Let S be the set of all messages and packets over a network N . If
a polymatroid f satisfies the necessary conditions stated in definition 6.2, where H
is replaced with f , then, we say f is a polymatroidal assignment to the network N ,
with parameters (k,m). Then, the polymatroid upper bound is the supremum k/m
over all pairs of (k,m) for which there exists a polymatroid assignment.
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The upper bound makes sense because if there is a (k,m) solution to the net-
work N , then the entropy function on the set of messages and packets is a (k,m)-
polymatroid assignment, so the polymatroid upper bound on the capacity is at least
the actual capacity of N . This provides the best upper bound on capacity that is
"derivable from the Shannon-type information inequalities"[5], however, it is possible
that one uses non-Shannon-type inequalities to reach a better upper bound, which
will be briefly explained in section 6.3.

Theorem 6.5 For any matroidal network N , N has a polymatroid upper bound on
the capacity of at least 1.

Proof. Let N be a matroidal network over matroid M . Let r be the rank function of
the matroid M and f be the network-matroid mapping. Then, we can easily verify
that r ◦ f is a polymatroid that also satisfies the necessary conditions. Since f |M is
injective and f(M) is independent, by N1, we have (r ◦ f)(M) = |M |, which implies
k = 1. By the rank axiom of matroid, (r ◦ f)(p) ≤ 1 since rank of one element is
at most 1. Thus, r ◦ f is a (1, 1)-polymatroidal assignment, and we have the upper
bound of at least 1 as required. �

6.2 Unachievable network capacity
From remark 4.20, we know that the Fano matroid and non-Fano are representable
only for fields of characteristic 2 and not 2 respectively. Thus, it is tempting to
see if this incompatibility result transfers over to the matroidal networks that are
constructed from them. The following proposition from [5] shows that this is indeed
true.

Proposition 6.6 The Fano and non-Fano network are not solvable using the same
alphabet.

In particular, the Fano network is only solvable using alphabets A where |A| = 2k

for some k, whereas, the non-Fano network is solvable when |A| = 2k + 1 for some
k. It turns out, as shown in [4], this incompatibility result translates to unachievable
capacity when considering the union of the networks.

Proposition 6.7 If N and M are two disjoint networks that cannot be solved using
the same alphabets, then N ∪ M has coding capacity 1, but the capacity is not
achievable.

Proof (Sketch).
Since N and M are solvable, each has capacity at least 1 respectively. Let A and
B be some alphabets where N and M are solvable respectively, with |A| 6= |B|. By
lemma 1 in [4], coding capacity of a network is independent of its alphabet size, so
the coding capacity of M over A is at least 1 as well. Furthermore, let there be a
(k, n) solution ofM over A, then k

n
> 1− ε for any ε > 0, since the capacity is at least

33



1. Note that k < n is not possible. With some work, we can show that the coding
capacity of N ∪M is at least 1, since we have a (k,max{k, n}) solution for M and a
(k, k) solution for N over the alphabet A.

Now, suppose for a contradiction, there is a (k, n) solution for N ∪M with k ≥ n
over some alphabet C. Then, this implies there is a (k, k) solution for each N and
M using C, contradicting our assumption that they cannot be solved using the same
alphabet, namely Ck. Finally, lemma 2 in [4] states that every rational coding rate
below the coding capacity is achievable. Thus, the coding capacity of N ∪M is at
most 1, since any (k, n) solution for it must satisfy k < n, meaning the supremum of
all possible k/n is at most 1. Consequently, the coding capacity is exactly 1, but it
is not achievable. �

As a result, the union of the Fano and non-Fano network has an unachievable net-
work capacity of 1. Furthermore, we have fractional (k,m)-solutions to this network
where k/m can be arbitrarily close to 1, but can never achieve 1. 3

Remark 6.8 One can use a similar network construction to show that linear coding
solution is insufficient. In particular, there is no (k,m)-fractional linear solution
where k/m is arbitrarily close to 1. However, this network is shown to be non-linearly
solvable.

6.3 Some remarks on the capacity of networks
There are various types of capacity bounds one can define for a network as shown in
section 2.3. Here, we are mainly interested in routing capacity, linear coding capacity,
and general coding capacity. Routing problem can be solved using multi-commodity
flow techniques, and while it is possible to compute the capacity, there is no efficient
algorithm to compute it in general. For both general and linear coding capacity, there
is currently no known algorithm to compute them for an arbitrary network, regardless
of efficiency.

For matroidal networks, we showed that the polymatroid upper bound on the
capacity is at least 1. This is insufficient, however. For instance, in the case of
Vámos network, the capacity is at most 1, which can be seen from a bottleneck edge
in the network. This implies using Shannon-type information inequalities will not
yield us a better bound. However, one can use non-Shannon type inequalities, such
as the Zhang-Yeung inequality [20], to get a tighter capacity upper bound of 10

11 .
Coincidentally, the Ingleton’s inequality for matroid representability has also found
its use case in linear coding. The implication of this is that the capacity region of
linear coding can be strictly smaller than that of general network coding. In the
Vámos network case, we are able to push the linear capacity bound down to 5

6 using
Ingleton’s inequality, which is known to be tight since one is able to construct a
(5, 6)-fractional linear solution.

3The definition of supremum in network capacity was not immediately clear to me initially, but
I think cases like the one above motivate this definition.
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7 Conclusion
In this project, we have shown above some unexpected connections between network
coding, network flow, and matroid theory. It is a fascinating field of study with
interesting interplay with other theoretical areas. Like many other fields, there are
still a lot we do not know about. So, we would like to conclude by listing some
interesting problems4 in network coding and related areas.

1. How to find the general and linear coding capacity for an arbitrary network?

2. Does the Vámos network have a solution better than the linear solution?

3. What are the classes of networks that can be generated from algorithm 2?
What are some non-trivial upper-bounds on the number of networks of size
k that can be constructed from the algorithm? What if we restrict to only
graphic matroids, since we can count the number of bases of a graphic matroid
efficiently?

4. Are there some specific properties of graphic matroids that transfer nicely to
matroidal networks, other than results that directly follow from representable
matroids?
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