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Abstract

In this short note, we will show a graph-theoretic approach to proving the upper bound of

Aq(n, d) under the restriction d > n(q−1)
q using Turán’s theorem.

1 Introduction

Coding theory is an active area in information theory with a wide-array of applications, from data
transmission to cryptography. One of the fundamental codes in coding theory is the block code, as
defined below along with some of its other properties.

Definition 1.1. Let A be an alphabet set. A word is a vector with elements in A. A code a set
of words and the words are called codewords. We say a code C is a block code of length n and size
M , or [n,M ]-code in short, if |C| = M and all words in C are of length n.

Definition 1.2. The distance between two words u, v in a code is defined by the number of positions
in which their elements differ. The distance of a code is the minimum distance between all pairs
of words in the code. We say a code C is an [n,M, d]-code if it is a block code of length n, size M ,
and distance d.

Definition 1.3. Given n, q, d ∈ Z≥0, we define Aq(n, d) as the largest value M such that there
exists an [n,M, d]-code over some alphabet A of size q.

Motivated by the applications, researchers have worked on understanding various properties of
different codes, such as bounds on the block code capacity. In this short paper, we will prove an
upper bound of the rate of a general block code, stated as theorem 2.3. This elementary result
is known and has been presented as an exercise in [Gur10], where the implied approach seems
to be linear-algebraic. Here, we will instead turn to a graph-theoretic approach and provide an
alternative proof that uses the Turán’s theorem. It should be noted that this technique is not new,
as there have been other instances in coding theory where results have been proved by applying
Turán’s theorem, such as the generalized Gilbert-Varshamov bound [Tol97].

Theorem 1.4 (Turán, 1941). The maximum number of edges in a graph of n vertices that does

not contain a Kq+1 is q−1
q

n2
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2 Main Result

Definition 2.1. Let C be an [n,M, d]-code with codewords {c1, · · · , cM} over alphabet A, where
the size of A is q. Furthermore, for a codeword c, we write c[i] as the ith symbol in codeword c.
Then, the difference graph of C, denoted GC , is a graph with n×M vertices, such that

V (GC) = {v1,1, · · · , v1,M , · · · , vn,1, · · · , vn,M},

and for each pair of vi,j , vk,l ∈ GC ,

vi,jvk,l ∈ E(GC) if and only if i = k and cj [i] ̸= cl[k].

Also, for each 1 ≤ i ≤ n, we define Hi := {vi,1, · · · , vi,M} as a subset of vertices of size M . Similarly,
for each 1 ≤ i ≤ M , we define Ji := {v1,i, · · · , vn,i} as a subset of vertices of size n.

In other words, there is an edge between vertices vi,j and vi,l if the ith symbol of codewords cj
and cl are different. Also, note that there is no edge between vertices of Hi and Hj if i ̸= j. Before
we prove theorem 2.3, we have to first prove a lemma.

Lemma 2.2. Let C be an [n,M, d]-code over alphabet A of size q and GC be the difference graph
of C. Then, Kq+1 is not a subgraph of GC , where Kq+1 is the (q + 1)-clique.

Proof. Suppose on the contrary that GC has a (q+1)-clique as a subgraph. By construction, edges
in GC only exist between vertices within the same Hi. Let K be a (q + 1)-clique in Hi for some
i, and without loss of generality, we assume {vi,1, vi,2, · · · , vi,q, vi,q+1} are the vertices of K. By
definition of edges in GC , it means that the symbols c1[i], c2[i], · · · , cq+1[i] are all pairwise different.
However, this implies there are q + 1 distinct symbols, contradicting that A is of size q.

We are now ready to prove the main theorem of this paper.

Theorem 2.3. Let n, d, q ∈ Z≥0. If d > n(q−1)
q , then Aq(n, d) ≤ dq

dq−n(q−1) .

Proof. Fix n, d ∈ Z≥0 and A to be an alphabet set of size q. Let M ∈ Z≥0 and C be an [n,M, d]-
code over A with codewords {c1, · · · , cM}. Let GC be the difference graph of C. Now, suppose,

for a contradiction, dM(M−1)
2n > q−1

q
M2

2 . We will show that GC has a (q + 1)-clique, contradicting
lemma 2.2.

Since C has distance d, GC has at least
∑M−1

i=1 (d · i) = d(M−1)M
2 number of edges. This is

because if we fixed a codeword ci, then for every other codeword cj ∈ C, ci and cj will have at least
d positions where their symbols differ, and so, it has d edges between vertices in Ji and Jj . From
the definition of GC , each Hi are essentially different components of the graph. In particular, edges
in GC can only be between vertices within the same Hi. Hence, by the pigeon hole principle, there
exists some Hi where its induced subgraph has at least ⌈d(M−1)M

2n ⌉ edges.

Let G̃ be the induced subgraph ofHi. We want to show that there is a (q+1)-clique in G̃. By our

initial assumption, dM(M−1)
2n > q−1

q
M2

2 , so |E(G̃)| > q−1
q

M2

2 . By Turán’s theorem, the maximum

number of edges in a Kq+1-free graph of M vertices is q−1
q

M2

2 . This means G̃ is not Kq+1-free by

Turán’s theorem. However, this contradicts lemma 2.2, so we have dM(M−1)
2n ≤ q−1

q
M2

2 . Solving for

2



M in the inequality yields

dM(M − 1)

2n
≤ q − 1

q

M2

2

M − 1

M
≤ n(q − 1)

dq

1− 1

M
≤ n(q − 1)

dq

M ≤ dq

dq − n(q − 1)
.

Hence, we have Aq(n, d) ≤ dq
dq−n(q−1) as desired.
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