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1 Background
Coding theory is an active area in information theory with a wide-array of appli-
cations, from data transmission to cryptography. One of the fundamental codes in
coding theory is the block code, as defined below along with some of its other prop-
erties.

Definition 1.1 Let A be an alphabet set. A word is a vector with elements in A. A
code a set of words and the words are called codewords. We say a code C is a block
code of length n and size M , or [n, M ]-code in short, if |C| = M and all words in C
are of length n.

Definition 1.2 The distance between two words u, v in a code is defined by the
number of positions in which their elements differ. The distance of a code is the
minimum distance between all pairs of words in the code. We say a code C is an
[n, M, d]-code if it is a block code of length n, size M , and distance d.

Definition 1.3 Given n, q, d ∈ Z≥0, we define Aq(n, d) as the largest value M such
that there exists an [n, M, d]-code over some alphabet A of size q.

Motivated by the applications, researchers have worked on understanding various
properties of different codes, such as bounds on the block code capacity. In this short
paper, we will prove an upper bound of the rate of a general block code, stated as
theorem 2.3. This elementary result is known and has been presented as an exercise
in [1], where the implied approach seems to be linear-algebraic. Here, we will instead
turn to a graph-theoretic approach and provide an alternative proof that uses the
Turán’s theorem. It should be noted that this technique is not new, as there have
been other instances in coding theory where results have been proved by applying
Turán’s theorem, such as the generalized Gilbert-Varshamov bound [2].
Theorem 1.4 (Turán, 1941)
The maximum number of edges in a graph of n vertices that does not contain a Kq+1

is q−1
q

n2

2 .
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2 Proof of the main result
Definition 2.1 Let C be an [n, M, d]-code with codewords {c1, · · · , cM} over alpha-
bet A, where the size of A is q. Furthermore, for a codeword c, we write c[i] as the
ith symbol in codeword c. Then, the difference graph of C, denoted GC , is a graph
with n×M vertices, such that

V (GC) = {v1,1, · · · , v1,M , · · · , vn,1, · · · , vn,M},

and for each pair of vi,j, vk,l ∈ GC ,

vi,jvk,l ∈ E(GC) if and only if i = k and cj[i] 6= cl[k].

Also, for each 1 ≤ i ≤ n, we define Hi := {vi,1, · · · , vi,M} as a subset of vertices of
size M . Similarly, for each 1 ≤ i ≤ M , we define Ji := {v1,i, · · · , vn,i} as a subset of
vertices of size n.

In other words, there is an edge between vertices vi,j and vi,l if the ith symbol of
codewords cj and cl are different. Also, note that there is no edge between vertices
of Hi and Hj if i 6= j. Before we prove theorem 2.3, we have to first prove a lemma.

Lemma 2.2 Let C be an [n, M, d]-code over alphabet A of size q and GC be the
difference graph of C. Then, Kq+1 is not a subgraph of GC , where Kq+1 is the
(q + 1)-clique.

Proof. Suppose on the contrary that GC has a (q + 1)-clique as a subgraph. By
construction, edges in GC only exist between vertices within the same Hi. Let
K be a (q + 1)-clique in Hi for some i, and without loss of generality, we assume
{vi,1, vi,2, · · · , vi,q, vi,q+1} are the vertices of K. By definition of edges in GC , it means
that the symbols c1[i], c2[i], · · · , cq+1[i] are all pairwise different. However, this implies
there are q + 1 distinct symbols, contradicting that A is of size q. �

We are now ready to prove the main theorem of this paper.

Theorem 2.3 Let n, d, q ∈ Z≥0. If d > n(q−1)
q

, then Aq(n, d) ≤ dq
dq−n(q−1) .

Proof. Fix n, d ∈ Z≥0 and A to be an alphabet set of size q. Let M ∈ Z≥0 and C
be an [n, M, d]-code over A with codewords {c1, · · · , cM}. Let GC be the difference
graph of C. Now, suppose, for a contradiction, dM(M−1)

2n
> q−1

q
M2

2 . We will show that
GC has a (q + 1)-clique, contradicting lemma 2.2.

Since C has distance d, GC has at least ∑M−1
i=1 (d · i) = d(M−1)M

2 number of edges.
This is because if we fixed a codeword ci, then for every other codeword cj ∈ C, ci

and cj will have at least d positions where their symbols differ, and so, it has d edges
between vertices in Ji and Jj. From the definition of GC , each Hi are essentially
different components of the graph. In particular, edges in GC can only be between
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vertices within the same Hi. Hence, by the pigeon hole principle, there exists some
Hi where its induced subgraph has at least dd(M−1)M

2n
e edges.

Let G̃ be the induced subgraph of Hi. We want to show that there is a (q + 1)-
clique in G̃. By our initial assumption, dM(M−1)

2n
> q−1

q
M2

2 , so
∣∣∣E(G̃)

∣∣∣ > q−1
q

M2

2 . By
Turán’s theorem, the maximum number of edges in a Kq+1-free graph of M vertices is
q−1

q
M2

2 . This means G̃ is not Kq+1-free by Turán’s theorem. However, this contradicts
lemma 2.2, so we have dM(M−1)

2n
≤ q−1

q
M2

2 . Solving for M in the inequality yields

dM(M − 1)
2n

≤ q − 1
q

M2

2
M − 1

M
≤ n(q − 1)

dq

1− 1
M
≤ n(q − 1)

dq

M ≤ dq

dq − n(q − 1) .

Hence, we have Aq(n, d) ≤ dq
dq−n(q−1) as desired. �

3 Conclusion
The theorem we have shown above is already a known upper bound of Aq(n, d), but we
hope that this new approach will be useful in solving coding theory related problems
in the future.
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